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Preface

This volume contains the papers presented at the 13th SDL Forum, Paris, France
entitled “Design for Dependable Systems” and reflects the intent to have a bal-
ance between experience reports and research papers related to System Design
Languages.

The language that was at the heart of the first few SDL Forums was the
ITU-T Specification and Description Language defined in Z.100, and the appli-
cation domain was almost entirely fixed-line telephone communication. Mobile
telephony was for the super-rich and electronics in cars was just for radios.

Ever since its inception, 30 years ago, the Z.100 language has been used
for model-driven development in the telecommunication industry. Nowadays,
model-driven engineering is a must for all industries and has been generalized
by OMG to all application domains as covered by a paper on an automotive case
study in this volume. What has been happening over the past few years is that
the infrastructure has been put in place providing good support for the model-
driven paradigm, so that the economic benefit of the approach makes it more
of a necessity than a choice for designing dependable systems. The experience
report from Motorola in this volume underlines this trend.

Although the SDL Forum Society that organizes these SDL Forums has it roots
in telecommunications, the System Design Languages needed for modeling in that
industry are applied in other real-time engineering domains such as aerospace,
the ubiquitous Bluetooth devices, and railways. For the last few years all model-
ing languages and technologies have had a tendency to converge towards UML,
and since UML 2.0 and its profile definition capability came out, there is now an
amazing number of diverging profile proposals based on older technologies. This
was reflected in the conference programme with tutorials on SysML, SDL-RT,
MARTE, and Z.109 covering different aspects of system modeling. An example
in this volume is the paper that utilizes the UML 2.0 Testing Profile.

This latter paper is one of a number that shows the continuing interest and
developments in the ITU-T Testing and Test Control Notation (TTCN). Al-
though much of the evolution of TTCN has been through the work of ETSI,
it is still largely seen as an ITU-T standard. In some ways this makes sense as
ITU-T re-publishes the ETSI revisions of TTCN as a truly international standard
(Z.140 series). TTCN is widely used with the ITU-T Message Sequence Chart
(Z.120) and Specification and Description Language (Z.100 series). These are
also used with another ITU-T product, Abstract Syntax Notation One (X.680
series), which is used to define protocol data units with their associated encoding
rules (X.690 series). However, these languages are not thought to be adequate to
capture requirements. A new language for User Requirements Notation (Z.150
series) is in progress, which includes Use Case Maps — covered by another paper
in this volume.
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So with all these ITU-T languages for system design, what is the role of
UML?

UML is seen, as its name implies, as a unifying concept between languages.
Because UML leaves a number a semantic issues open and even states frequently
that there is no specific notation for a particular concept, it is in reality largely
a framework that has to be populated with specific semantics and notations
before it can be used to completely develop products. One route is to choose
a particular UML tool, whose implementation (such as writing actions in C or
Java) will have fixed certain issues, but at the cost of potentially being locked
into that tool. Another route is to provide UML profiles for existing languages,
thus not only binding UML to the semantics and notation of the language, but
also providing some glue between different notations. It is the latter route that
the ITU-T is taking (albeit rather slowly), with Z.109 being approved in 2007 as
the UML profile for Z.100. Other profiles are in the ITU-T work plan for X.680,
Z.120, Z.140 and Z.150. A related path is presented in the first paper in the
volume, providing a meta-model for (a subset of) Z.100.

UML also has another role. If you ask someone who claims to be using UML
which diagrams they use, often the reply will be that they mainly use Class Dia-
grams and Object Diagrams. The other 11 types of UML diagrams are used less
frequently and some quite rarely (if at all). This is partly because the Class Dia-
grams and Object Diagrams meet a need that is not well met by other notations.
Even the ITU-T in its 1996 Z.100 SDL+ methodology supplement suggested us-
ing diagrams in the Object-Modeling Technique notation (a forerunner of UML
subsumed into UML in the unifying process). This is why it is natural to use
these diagrams with the ITU-T languages: UML is frequently used for class and
object modeling with Z.100 and other state machine languages in this volume
and elsewhere. UML therefore not only provides the glue, but itself provides an
important member of a set of System Design Languages.

Although the original Z.100 of 30 years ago was a paper and pencil language,
none of this engineering today would be practical without computer-based tools
because the systems in question are much more complex. This is evident from
most of papers. As well as tools to directly support System Design Languages,
included in this volume are papers on a real-time operating system and the use
of probability modeling to analyze realistic-size networks without encountering
state space explosion. At first glance, it may seem that these papers are not
relevant, but you will probably change your mind when you read the papers, as
a key issue in both cases is performance. There are many factors involved in the
design for dependable real-time systems, so it is hard to predict what might be
relevant for a future SDL Forum.

Thanks

A volume such as this could not, of course, exist without the contributions of
the authors, who are thanked for their work.
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Modeling Experience and Extensions

Consistency of UML/SPT Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Abdelouahed Gherbi and Ferhat Khendek

Formal Verification of Use Case Maps with Real Time Extensions . . . . . . 225
Jameleddine Hassine, Juergen Rilling, and Rachida Dssouli

Using Probabilist Models for Studying Realistic Systems: A Case Study
of Pastry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Guillaume Châtelet, Benoit Parreaux, and Yves-Marie Quemener

OpenComRTOS: An Ultra-Small Network Centric Embedded RTOS
Designed Using Formal Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Eric Verhulst and Gjalt de Jong

SDL Design and Performance Evaluation of a Mobility Management
Technique for 3GPP LTE Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Tae-Hyong Kim, Qi-Ping Yang, Soon-Gi Park, and Yeun-Seung Shin

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289



A Model-Based Standard for SDL

Andreas Prinz1, Markus Scheidgen2, and Merete S. Tveit1

1 Faculty of Engineering, Agder University College
Grooseveien 36, N-4876 Grimstad, Norway
{andreas.prinz,merete.s.tveit}@hia.no

2 Department of Computer Science, Humboldt Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany

scheidge@informatik.hu-berlin.de

Abstract. Language descriptions have much information captured in
plain (English) text, and even the formalised parts are often informally
connected with the overall language definition. These imprecise descrip-
tions are hardly usable to automatically generate language tool environ-
ments out of the language standard. SDL has already managed to define
syntax and semantics in a quite formal way. Currently, this formality is
connected by using different types of grammars. Meta-models, however,
have proven to be a good way of expressing complex facts and rela-
tions. Moreover, there are tools and technologies available realising all
language aspects based on completely formal and still easily understand-
able meta-model-based descriptions. This paper is about an experiment
of combining all these existing techniques to create a definition of (a
subset of) SDL. This allows to have immediate tool support for the lan-
guage. This experiment includes the language aspects concrete syntax
representation, static semantic constraints, and language behaviour. It
turns out that this is almost possible.

1 Introduction

Model Driven Development (MDD) uses models to describe systems on a higher
level of abstraction. This abstraction, i.e. hiding of much detail, is possible be-
cause models are instances of more and more complex modelling languages,
which provide more and more specific concepts. Therefore, there is a need for
more complex and (domain) specific modelling languages. Furthermore lan-
guages in an MDD environment are only meaningful if they come with a compre-
hensive tool environment. So there are two challenges: creating a human readable
language standard and providing tool support for the language.

It is obvious that it is necessary to have a description of the language first.
We will call such a description a meta-model. Today, there are several language
description techniques and meta-tools that allow to describe and realise single
language aspects like concrete syntax, static semantic analysis, model execution,
or code generation. Tooling can be achieved by manually building language tools
or by creating modelling tools automatically from the language description. In
the latter case, the language description has to be completely formal.

E. Gaudin, E. Najm, and R. Reed (Eds.): SDL 2007, LNCS 4745, pp. 1–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The contribution of this paper is a combination of existing and new techniques
forming one cohesive language description with the possibility to create a com-
plete tool environment from it. We start with a representative sub-set of SDL
(this sub-set provides all features necessary for the well-known camera example),
and create meta-model-based descriptions that can function as a human-readable
standard and an SDL tool environment including textual and graphical editors,
static semantic checker, and model simulator.

The current SDL standard [8] with its formal semantics specification [7] al-
ready showed that most language aspects can be described formally without
ambiguities. In [3], Prinz et. al. showed that even aspects that are usually de-
scribed informally, like language behaviour, can be described formally allowing
tools to be created from such formal descriptions in an at least semi-automated
way. In [4] we discussed the possibility to use meta-modelling as the basis for in-
tegrating different languages and tools with each other. We already successfully
evaluated the possibilities for automated tool support based on meta-models in
the context of domain specific languages in [10,14].

In this paper we explain how different meta-modelling techniques work to-
gether. We focus on the two main purposes given above: how to present the
language description in a user-friendly way and how to use the description for
generating tools. Although in an ideal world, these two purposes would coincide,
we could not achieve a complete match in this experiment.

The paper is structured as follows. In Sect. 2 we will introduce the different
language aspects that we used in this experiment together with their relation to
each other. The subsequent sections will present the approaches and technologies
that we used to describe the different aspects one by one, namely structure
(Sect. 3), constraints (Sect. 4), representation (Sect. 5), and behaviour (Sect. 6).
Each section contains parts of the SDL language as examples. In the concluding
Sect. 7, we discuss our results and suggest further work.

2 Basics

In [9] meta-modelling is defined as: The construction of an object-oriented model
of the abstract syntax of a language. However, in our article we use the term
meta-model in a wider sense: A meta-model is a model that defines a language
completely including the concrete syntax, abstract syntax and semantics.

As a language description, meta-models can have several aspects that we have
already identified in [10]. Figure 1 shows these aspects. Even though there is no
complete agreement about what parts a language description consists of, these or
similar parts can be identified in most contexts. The picture shows the following
parts.

Structural information for the meta-model includes all the information about
which concepts exist in the domain and how they are related. An example
of this would be a MOF (Meta Object Facility) class diagram. In our under-
standing, this part does just include very simple structural properties and
not more advanced concepts that rely on the use of constraints.
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Structure

Constraints

R
ep
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n Behaviour

graphicaltextual
mapping

execution

Fig. 1. Structure of a Meta-model

Constraints give additional information about the structure in that they iden-
tify the allowed structure according to additional logical constraints. This
will include first-order logic constraints (e.g. written in Object Constraint
Language (OCL)) as well as multiplicity constraints. In classical compiler
theory these are collected under the name of static semantics and in a meta-
model context they are called well-formedness rules.

Representation describes model serialization syntax and information about
how the models are to be (re)presented to the user. The textual grammars
(concrete textual syntax) are well understood in terms of compiler theory.
When it comes to graphical grammar (concrete visual syntax), there is less
agreement and there are some open research topics.

Behaviour describes how the model is used. This item includes execution of the
model as well as mappings. By mapping we understand a relation between
the model itself and another representation, e.g. in another language. A
typical example would be a compiler from Java to JVM, or a mapping from
a platform independent model to a platform specific model. An execution is
the real run of the model, which is of course only possible if the model is
executable. A typical example here would be a run of a Petri net.

In Fig. 1, the structure is the central aspect and all the other parts relate to
the structure. The constraints have to be connected to the structural elements
that they constrain. The representation parts describe the representation of el-
ements in the structure, whereas the behaviour parts describe a behaviour for
the elements defined in structure.

3 Structure

The structure part of a language description defines an abstract data structure
for models, programs, or specifications written in that language. Like in model-
driven development, object-oriented models in the form of class diagrams, are
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used in most meta-modelling architectures to model structures. These type mod-
els use classes as refinable classifications of entities by means of shared charac-
teristics, modelled with attributes. Associations are used to classify the relations
between entities. Associations are just a special kind of classifiers and actual
links are a special kind of entities.

For a user-friendly description of the language, we use CMOF from MOF 2.0
[11]. CMOF (complete MOF) provides additional concepts to model abstractions
compared to EMOF (essential MOF also part of MOF 2.0), which only defines
a set of basic meta-modelling features. Examples for these additional CMOF
features are property refinements, which allow to relate attributes or association
ends in the context of classifier specialisation.

SdlNamedElement

+name : LexicalName

SdlAgentType

+kind : SdlAgentKind

SdlClassifier

SdlParameter

+kind : SdlParameterKind

SdlNameSpace

SdlAgent

SdlVariable

SdlFeature

SdlSignal

{subsets member}
+feature

0..*

{subsets feature}

+variable

0..*

+type1

{subsets feature}
+agent

0..*

{subsets variable,ordered}
+parameter

0..*

+member

0..*

+ownedAgentType
{subsets member}

0..*
{derived union, redefines variable}

+variable
0..*

Fig. 2. Classifier concepts in SDL

In terms of languages, classes classifymodel elements based on the language con-
cept that they instantiate. For example, all the agent types in all the existing SDL
specifications are instances of the agent type concept. The first sample meta-model
part in Fig. 2 describes the language concept agent type as a meta-model class. At-
tributes and associations are used to define the structural characteristics of agent
types:anagent typecancontainotheragent types, it cancontain type-basedagents,
ithasparametersandvariables.Theexamplealso showshowcharacteristicsofmore
abstract language concepts can be reused. Agent types and signals for example,
are just special SDL classifiers. SDL classifiers have features, like variables or pa-
rameters, as general characteristics. Variables are just one special form of features,
and parameters just one special form of variables. Agent types inherit containment
of variables and parameters and extend their set of features, containing variables
and parameters already, with agents as just another type of feature. Signals inherit
ownership of parameters. Signals also inherit ownership of variables and features,
but only allow parameters as possible variables or features. The redefinition of the
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property variable in signal as a derived union ensures that parameters are the only
possible subset of variables.

Using all the CMOF features to express abstractions, enabled us to compose
a meta-model for SDL from a predefined library of abstract language concepts.
We re-used the UML infrastructure library accordingly to create the SDL meta-
model. The UML infrastructure library was used to define the UML, so this
approach makes sure that the two languages UML and SDL have a common
base in their underlying language infrastructure.

SdlAgentType

+kind : SdlAgentKind

SdlAgent

SdlChannelEnd

SdlChannelPath

SdlChannel

SdlGate

SdlSignal

{subsets member}

+channel0..*

+agentType
1

{subsets feature}

+agent0..*

{subsets member}
+gate 0..*

+agentType

1

+source1+target
1

+gate
0..1

+channelEnd

0..*

+signal

0..*

+agent 0..1 +/opposite
0..1

+path 1..2
+channel1

+receive0..*+send0..*

Fig. 3. Concepts for communication structures in SDL

Figure 3 shows another part of the SDL structure meta-model. This meta-
model part covers the concepts of the sample specification in Fig. 4, which shows
a block type definition (the entire example can be found in [15]). This block type
definition is shown twice: in SDL syntax and as an object diagram, instantiating
the SDL structure meta-model.

After having defined the structural meta-model in MOF 2.0, we had to find
a proper tool supporting such descriptions. Although it is possible to find tools
for MOF 2.0 (e.g. [13]), we decided to take a simpler tool which allows better
integration with the other aspects as described in the next sections.

For the language tooling, we use Ecore (the meta-modelling language of EMF
[1]). Ecore is a simple language allowing to express structures with just a few
basic concepts. It is similar to EMOF. In Ecore the expressive power of the
CMOF additional concepts has to be implemented manually, for example with
OCL-expressions. Because of its simplicity, Ecore has the advantage of a clearer
mapping to programming languages and more extensive tool support.

Compared with the SDL standard, the MOF-based structure definition yields
almost the same object structure of a specification. The advantage is that it has
much richer classification of the language concepts.
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Gext to Gout : SdlChannelPath

Gout to Gext : SdlChannelPath

WebCam : SdlAgentTypeCam : SdlAgentType

SR1 : SdlChannel

: SdlChannelEnd: SdlChannelEnd

: SdlChannelEnd: SdlChannelEnd

Gout : SdlGateGext : SdlGate

P : SdlAgent

ownedAgentType

agent

type

gategate

gategate gate gatechannel

path

path

source source

target target

Fig. 4. Part of an example SDL specification and its model representation

4 Constraints

Structure models are designed to define valid graphs of objects and links, by
defining classes and associations. To complement these concepts of constructive
modelling, we use boolean expressions to constrain the possible instances of a
meta-model.

To define such static semantic rules for SDL, we use the Object Constraint
Language (OCL) [12]. OCL is specifically designed as an expression language for
object-oriented structures. It allows to define expressions based on types defined
in a meta-model. These expressions, defined at meta-level, can then be evaluated
on models. OCL is a statically typed language. Each formula is defined in the
context of a meta-model type. Based on this context type an expression can use
the features of the corresponding meta-element to navigate through models. OCL
uses several predefined operators and functions to combine feature values into
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a value for an OCL expression. Predefined functions and operators are derived
from first order predicate logic.

We will illustrate the use of OCL with a sample constraint as given in the
SDL standard. The text in Z.100 [8] is as follows:

The contained Agent-definitions of an Agent-definition with the Agent-
kind PROCESS shall all have the the Agent-kind PROCESS.

In the formal SDL semantics [7], this is formalised using first-order predicate
logic to define expressions over abstract syntax as follows:

∀d ∈ Agent-type-definition : (d.agentKind1 = process) ⇒
(d′ ∈ Agent-type-definition ∪ Agent-definition : d′.parentAS1 = d ⇒

d′.agentKind1 = process)

In the meta-model, the same constraint is part of the context of SdlAgentType
as follows:

context SdlAgentType
inv: (self.agentKind = #PROCESS) implies

(self.ownedAgentType->union(self.agent.type)->forAll(
agentKind = #PROCESS))

In our approach the meta-model reflects the SDL structures as defined with
grammars in the SDL standard. Therefore, we can use the same conditions from
the SDL standard as a formal basis for corresponding OCL expressions. It is
obvious that the two descriptions above match. The only difference is that in
the meta-model-based OCL we navigated along object structures, instead of
sets and nodes obtained from the abstract syntax tree in the grammar-based
SDL standard. It should also be noted that the grammar-based SDL standard
uses a complete view on all objects and uses logic to narrow onto the objects
of interest. OCL, in contrast, starts with the object of interest and collects all
other information from there.

Another sample constraint ensures compatibility of the two gates in bidirec-
tional channels. It exemplifies the navigation through the more complex com-
munication structures given in Fig. 3:

context SdlChannel
inv: self.path->size = 2 implies

self.path->forAll(p1, p2 | p1 <> p2 implies
(p1.source.gate = p2.target.gate and
p1.target.gate = p2.source.gate))

For defining all the constraints in the current SDL standard, it was necessary to
define auxiliary functions. Fortunately, OCL allows arbitrary typed expressions
and is thus also suitable as a query language, even though the name Object
Constraint Language suggests that it can only be used for constraints (boolean
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expressions). This allows to define derived and behavioural query features in
meta-models based on OCL, as long as these features do not change the model.
With derived properties and query operations, meta-modelling allows to define
utility functions on the static SDL models based on simple OCL expressions.
These utilities can be used in the realisation of other language aspects, such as
the language behaviour. The following sample expression implements the asso-
ciation end attribute of SdlChannelEnd, which calculates the opposite channel
end of the context channel end (self ):

context SdlChannelEnd::opposite:SdlChannelEnd
body: let otherChannelPath: SdlChannelPath =

self.channel.channel.path->select(c|
c <> self.channel)->first() in

if channel.target = self then otherChannelPath.source
else otherChannelPath.target endif

Finally, OCL can be used to express constraints that realise enhanced
meta-modelling features.In Sect. 3 we argued that the simple meta-modelling lan-
guage Ecore cannot be used to define the refinement of features. But those refine-
ment expressions, provided by MOF 2, can be realised via OCL constraints. For
example, for each redefined property there has to be an OCL expression that states
that the redefined property always has the same values as the redefining property.

In summary, the OCL-based constraint definition is similar to the SDL stan-
dard regarding constraints and auxiliary functions. The main difference is that
OCL is object-oriented.

5 Representation

In general, models are abstractions and do not have concrete appearance. But
we need a concrete model representation to communicate them. Models in our
minds need to be transformed into a concrete representation of the same model
on a piece of paper or computer screen. Since model representations are the basis
to exchange them with others, these representations need to be written in well
defined model notations. All language users have to know the same notation in
order to allow reasoning and exchange of models.

A notation is the definition of a model representation based on the structure
meta-model. Hence, notations are defined at the meta-level. A notation defines
a set of possible representations. Each representation represents a model of a
corresponding meta-model. For describing a representation, we distinguish be-
tween three kinds of meta-models: the language structure meta-model ; a model
that describes the entities of our notation, the notation model ; and a mapping
model that connects these two models, mapping notation concepts to language
concepts. All three models together provide all information necessary to provide
model representations in a concrete notation. Of course, in simple situations it
would be preferable with just one representation description. In Sect. 5.1 we give
more reasons why it is necessary to consider an explicit mapping.
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By separating notation model and structure meta-model, we allow to define
multiple notations for the same language. In the following we describe textual
and graphical representations for SDL models based on our SDL structural meta-
model.

5.1 Textual Representation

SDL is a language that has two syntax forms, a textual and a graphical. Although
the textual syntax is moved out of the standard into a separate attachment, it
is still an important format for tools and information exchange.

The textual syntax is not directly related to the meta-model of a language,
which is more like an abstract syntax. Firstly, the textual representation contains
information that is abstracted in the meta-model, such as indentation, comments
or keywords. If this was the only difference, we could generate a unique concrete
representation from a meta-model instance given some formatting instructions.
However, SDL does also allow several representations for the same model con-
struct. In fact, most programming languages allow this kind of flexibility, often
referred to as syntactic sugar.

An example of this is given in Fig. 5 which shows the structure on the left-hand
side and the representations on the right-hand side. All three representations
have the same internal structure, with differences being in the graphical or the
textual appearance or both. The solid arrows from the right-hand side to the left-
hand side represent the semantic mapping from the representation alternatives
to the same structure elements.

Please note that in the SDL standard, the mapping to the abstract syntax (i.e.
the structure), is given by two mappings. The first mapping is called transforma-
tion and describes an in-place replacement within the concrete syntax. In Fig. 5,
this is illustrated with a dashed line arrow. We might call this mapping a syn-
tactic mapping. The second step in the SDL standard is an almost 1:1-mapping
between the transformed concrete syntax and the abstract syntax.

Conceptually, the structure meta-model acts as the common core of all language
elements. The concrete notation describes additions like keywords, comments, or

SignalDefinition(TriggerPress);
SignalDefinition(TriggerRelease);

signal TriggerPress,
TriggerRelease;

signal TriggerPress;
signal TriggerRelease;

signal TriggerPress;

signal TriggerRelease;

Fig. 5. Two concrete representations for an SDL construct
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different syntactic forms. Inorder to capture this situationbest,weuseadirectmap-
ping from the notation model to the structure meta-model. For textual representa-
tions, the notation model is given by a context-free grammar. The mapping model
describes which concrete syntax elements refer to which meta-model elements.

As Fig. 5 illustrates, there might be several mappings from representation to
model elements, as in the case of the signal definitions. We give the mapping for the
signal definition below. We start with the concrete syntax description.

<signal definition>::=
signal <signal definition item>
{ <comma> <signal definition item> }* <end> .

<signal definition item> ::= <signal name> [<sort list>] .
<sort list> ::=

<left parenthesis> <sort> { <comma> <sort>}*
<right parenthesis> .

This definition is mapped to the meta-model using the following (uni-directional)
transformation.

<signal definition>(items) ==>
{ SignalDefinition(name=i.name, sorts=i.sorts)
| with i in items }

A typical pattern in textual languages is the definition-use pattern. At some place
an element is defined, and at some other place or even several other places the el-
ement is used. One may think of methods, variables, types or similar things. This
situation is represented by an identifier in grammars,but by a direct link in a meta-
model according to the typeproperty in the type of association.Thisway identifiers
only live in the textual representation and are almost useless for the meta-model.

Identifier resolution is formalised in the meta-model by a function resolve which
does the resolution for an identifier given the complete SDL specification. This is
done by defining an auxiliary function as detailed at the end of Sect. 4. The cur-
rentSDL semantics has chosen the same approach bydefining an auxiliary function
idToNodeAS1.

Grammar and mapping can be used to automatically create an editor, which cre-
ates an SDL model according to the structure meta-model from user input based on
the textual notation model. However, existing tools do only cover for a 1:1 mapping
between concrete notation and structure meta-model. Therefore we did not pursue
the concrete syntax to the end, and only created a parser from the description.

5.2 Graphical Representation

The graphical aspects of a language like SDL describe how the structural concepts
are represented graphically. How is a block presented to the user? How should a
system diagram look like? The graphical concepts are, like the structural concepts,
related to each other. While the relations between the concepts in the structure
describehow the language concepts are related to each other in a structural way, the
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Fig. 6. Meta-Meta-Model for Graphical Representation

relations between the graphical concepts say something abouthow the concepts are
related to each other graphically. The relations specify how the graphical concepts
is related to each other to form valid diagrams in that language.

To be able to specify some kind of representation by structural meta-model (no-
tation model), it is necessary to have a meta-meta-model for that. The meta-meta-
model specifies the concepts and relations that are necessary to define the language
graphics, in the same way that MOF or Ecore specify which concepts and which re-
lations are allowed when defining a structure model (see Sect. 3). Figure 6 presents
how the meta-meta-model for graphical notations looks according to our approach.
This model defines the concepts that can be used to define a graphical notation.

The top-level element is the graphical Specification that consists of a number of
Diagram Elements. These diagram elements are related to each other in one way
or the other. A Shape is a diagram element, and there exist two main categories of
Shapes -Container Shape andLine.AContainerShape is,as thename tells,a shape
that can have other Diagram Elements inside itself. There are four different kinds
of Container Shapes: Rectangle, Ellipse, Customised Shape and Text. One or more
Anchors belonging to a Shape are used to specify where the Shape could be con-
nected to another Shape. The Anchor is specified based on the property Bounding
in Shape.
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Fig. 7. SDL graphical meta-model for the concepts in Fig. 3

Most graphical languages do also include textual concepts, and how these tex-
tual concepts are handled must also be included in the meta-meta-model. Inspired
by traditional grammar approaches for text handling, a Text element is either a
Terminal or a NonTerminal. A terminal represents “words” in the language, and
examples of a value from SDL are e.g. the name of an agent type, or an attribute.
A Special textual element is another kind of terminal which models both keywords
(e.g. signal, use) and special signs (e.g. “;”, “:”) which are all predefined. An ex-
ample of anon-terminal is a textSequence. A text sequence is in turn a composition
of a number of other text elements (both terminals and non-terminals).

The meta-meta-model for graphical representation in Fig. 6 is at the same level
as the MOF meta-meta-model in the OMG four level hierarchy. It makes it possible
to specify the SDL graphical representation. To illustrate this, a small excerpt of
the SDL graphical meta-model is shown in Fig. 7. The graphical concepts we see
in this model, are some of the concepts that are necessary to model a block type
diagram. They correspond to the concepts in the structure meta-model in Fig. 3.

The graphical model for SDL is mapped to the meta-model that specifies the
structure. Since there should be a clear separationbetween these two language con-
cepts, no direct references exist in the meta-models. This separation allows the ex-
changeability of different language notations. The mapping is a simple horizontal
mapping from the graphical representation to the structure starting with the rela-
tion between the top elements.

FrameSymbol ==> SDLAgentType
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The value of the SDLAgentKind in the heading of the diagram (from the graph-
ics) is then mapped to the value of the AgentKind in the structure:

FrameSymbol.AgentTypeHeading.SDLAgentKind ==>
SDLAgentType.kind

This way, the mapping integrates the language aspects, and instances from the two
meta-models are related in a correct way.

Unfortunately, there is no tool yet being able to handle such a graphics descrip-
tion. The best tool available in connectionwith Ecore is GMF (GraphicalModeling
Framework)[6].GMFis a framework thatprovides aplatform forbuilding graphical
editors, and it acts as a bridging technology between the GEF platform [5] and the
EMF modelling platform. GMF consists of two parts: the generative and the run-
time part. The runtime part could be seen as a set of plug-ins extending the already
existing EMF and GEF functionality. The generative part, on the other hand, is
mainly covering the parts that make it possible for the user to define diagram edi-
tors using specially designed EMF meta-models and to generate code based on this
information.

When defining the graphical representation in GMF, all the graphical concepts
that are in the language and their appearance are specified in the graphical defi-
nition model (the notation model). The tooling definition model is an additional
model that defines an editor toolbar and additional menu items, pop-up menus etc.
These items can be used to modify instances of the graphical definition model. The
graphical definition, the tooling definition and the structure definition (the .ecore
file defined by EMF) are then bound together by using the mapping model. This
mapping specification is then transformed into a generator model, which in turn is
used to generate all the code necessary to run a diagram editor.

That far, theGMFapproachmapsnicely to ourdescription.However, inpractice
GMF is only able to handle very simple specifications, in particular very simple re-
lations in the mapping model. This means that we had to map the graphical model
manually onto GMF, thereby losing much of its content. Of course, we gained also
something as the tooling definition model is going beyond our description. The cur-
rent graphical tool is adapted to fit the camera example as defined in [15].

Finally, we want again to compare our work with the existing standard. In the
standard, both graphical and textual syntax are very loosely connected to the ab-
stract syntax. Moreover, the notation to define the graphical syntax is not very for-
mal. Our new definition solves all these deficiencies. However, still we do not have
proper tool support.

6 Behaviour

In terms of behaviour (see again Fig. 1), for an SDL standard only the execution
semantics is relevant. Mappings are interesting forSDL compiler tools,butnotnec-
essary to define the SDL behaviour.
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Fig. 8. Runtime elements for state automatons

To define the execution semantics we have to distinguish between two different
kinds of structure elements, as detailed in [14]. The first kind describes abstract
syntax elements; the structure model of SDL consists of such elements. The other
kind of structure elements describes data that is needed at runtime. These runtime
data include variable assignments, process instances, input buffers, etc. We there-
fore have to augment the regular structure description for SDL with descriptions
for runtimedata. The runtimeelements are usually related to corresponding syntax
elements, e.g. an agent instance at runtime level represents an agent type defined
at syntax level. In a way, when creating instances of syntax elements, the related
runtime representations are instantiated. This way the syntax elements function as
factories producing related runtime elements. Figure 8 shows the syntax and run-
time structure needed to describe the signal output action in SDL; syntax elements
(white) are related to runtime elements (grey) by dashed arrows.

A similar distinction was also used for the SDL-2000 semantics [7]. Structural
SDL elements were related to runtime elements defined as Abstract State
Machines (ASM) [2]. Both were connected by an initialisation, i.e. an instantiation.
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rule execute(o: Output, Self: SDLAgentInstance) =
let values = [evaluate(a,Self) | a in arguments(o)] in
SignalOutput(o, values, toArg(o))
currentStatement(Self) := continueStatement(o)

rule SignalOutput(s,vSeq,toArg) =
let invReference = (toArg memberof PId) and

(resolve(s) notin Signalset(Interface(toArg))
in
if not invReference then
choose g in ingates(Self) with Applicable(s, toArg, g) do
extend SdlSignalInstance with si do
SdlSignal(si) := s
forall idx in Indices(vSeq) do
value(parameterValue(si)[idx]):= vSeq[idx]
receiver(si) := toArg; sender(si) := Self
Insert(si, now, g)

endchoose
endif

Fig. 9. Execution of output in ASM

Behavioural elements were translated to ASM runtime behaviour using a compila-
tion function. This way, structural SDL elements relate to runtime elements with
their corresponding abstract syntax counterpart. Behavioural SDL elements are
just abstract syntax elements which do not need a separate runtime representa-
tion. The current SDL standard moves the behavioural elements into the runtime
(ASM)domainusing the compilation function.This isnotnecessary for thenewap-
proach, because all elements already live in the same domain. For our meta-model-
based approach, we replaced the compilation function by a direct use of the syntax
elements. Instead of translating the SDL syntax tree elements into ASM elements,
we use an ASM interpretation of the SDL elements, as it is done alreadynow for the
structural SDL elements. The ASM execution functions that shall run the model
are attached to the corresponding syntax elements. Fig. 8 shows an example, where
output is a syntax elementwithan execution function.TheASM execution function
for the concrete SDL action signal output is given in Fig. 9. It might be interesting
to note that the current ASM semantics takes a global view, i.e. all ASM agents
can see everything (at least in principle). The new version is object-oriented in that
it attaches the ASM code to the syntax or runtime objects. This is easily achieved
starting from the current semantics, because it is now already formulated such that
it refers to an executing object. The only thing we have to find out, is the context
where the rule has to be placed.

In ASM, the context is shown by the parameters of the rules. As already stated
in [14], the runtime elements have tohave one context, whereas the syntax elements
need two contexts: a runtime context and a syntax context. In the code in Fig. 9,
Self denotes the runtime context, i.e. the actual agent instance. The syntax context
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rule Run(Self:SdlAgentInstance) = // AgentProgram
if (agentMode1(Self) = initialisation) then
InitAgent
else if (agentMode1(Self) = execution) then
if ExecRightPresent(Self) then
ExecAgent
else
GetExecRight
endif
endif

Fig. 10. Run of an agent instance in ASM

(the signal output statement) is given by the first parameter in the rule. In terms of
object-orientation this first parameter resembles the this parameter.

In a similar style, the behaviour for the runtime elements is given. One example
here is a process instance as shown in Fig. 10. In the object-oriented model, this
function is associated to a runtime object of type SDLAgentInstance, which is re-
ferred to in the ASM using the Self variable.

For the new dynamic description, we reused the existing ASM description many
times. In order to achieve object-orientation, all semantic functions had to be at-
tached to syntax elements or runtimeelements.Moreover, the compilation function
was not necessary any longer because the runtime actions were directly attached to
the abstract syntax elements.

7 Conclusions

In this article, we combined different technologies to create a description of SDL
that covers the language aspects structure, constraints, representation, and
behaviour. The resulting artifact can be used as a human readable standard, as well
as a basis for the automated generation of SDL reference tools. A complete tools
suite can be generated automatically: you can write an SDL specification in a gen-
erated SDL editor, check this specification, and execute it. We did this for the basic
part of SDL. This restricted SDL was extensive enough to realise the camera exam-
ple with the generated tools.

The resulting meta-model for SDL has some limitations and there are issues that
couldn’t be solved satisfactorily. The different language aspects, especially repre-
sentation, require extensions and modifications of the language’s structure model.
This creates the additional burden of aligning different similar models with each
other. Examples for this are representations that often provide different notations
for the same language concepts; behaviour operations and constraints that have to
be put into the structure model, even though the structure model is independent
from these aspects. The presentation of the language description is another prob-
lem, because meta-models used for tooling are cluttered with technical information
which is either not relevant for a standard or that a standard should abstract from.
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Therefore, you need to describe more than necessary for a language standard to
allow automatic tooling.

Compared to the SDL standard, our approach allows to utilize meta-model-
based technologies that are more and more replacing grammar-based language
development tools. The object-oriented meta-models allow for better reuse of ab-
stract language concepts, and eventually lead to more coherent and compact lan-
guage descriptions. The techniques used are mostly graphical and allow therefore
easier human comprehension. Meta-modelling in combination with proper tool-
ing, allows to display the language definition at different abstraction levels by
omitting details thereby enhancing human understanding.

All this leads to a language standard that is a model. Of course, we can also have
a printable document out of this model, but this is just another representation.

Future work will include further enhancements of language tools. Because those
tools are generic tools parametrized through language descriptions, all languages
immediatelyprofit fromfurther enhancements in this generic language tooling. An-
other important point is support for evolving languages. A language, as software,
yields requirements that may change over time and therefore a language, its tools,
and all the programs and specifications in a language may be subject to changes.
Through the unification principle everything is a model, also meta-models profit
from agile modelling techniques. General techniques like model transformations,
or meta-model specific techniques like meta-model/model co-adaptation might be
used to either evolve a language or to tailor a language to domain specific needs
(profiling).

References

1. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework (The Eclipse Series). Addison-Wesley Professional, Reading (2003)

2. Börger, E., Stärk, R.: Abstract State Machines. In: A Method for High-Level Design
and Analysis. Springer, Berlin (2003)
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Abstract. Describing an application as a simple composition of services
allows advanced features that exploit different platforms to be conceived
and to be formalized at a high abstraction level. Several languages and
formalisms have been proposed to this aim; UML diagrams are also used
to this purpose. Starting from such an abstract description, still much
work is needed to derive a working application, with a model-driven de-
velopment process that needs to introduce and formalize many details.
In this paper we report an experience in deriving an executable formal
model from a high level specifications, originally given following a mainly
architectural UML approach. The development process is illustrated on
an automotive case study. A state of the art code generation tool is then
applied to produce a prototype implementation of the analyzed system.

Keywords: Service-Oriented applications, formal modeling, automatic
code generation, formal verification, formal validation.

1 Introduction

Service-oriented computing is emerging as an interesting paradigm to describe,
at various levels of abstraction, systems composed by dynamic assembly of classic
computational entities, each of which provides a service to other entities, and
which can be distributed over different platforms and communication networks.

Describing an application as a simple composition of services allows advanced
features that exploit different platforms to be conceived and to be formalized at
a high abstraction level. Several languages and formalisms have been proposed to
this aim; the different languages adopted in the SENSORIA project [6] constitute
an example of this variety.

In the very same project, UML diagrams have also been used to this purpose,
and in particular have been used to give a first formalization to an automotive
case study. This case study defines several services given to the future car user
by application of mostly already available technology.
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UML deployment diagrams, which give a static view of the architecture, have
been used for a first formalization of the composition of services. A representa-
tion showing the evolution of the architecture was then required: for this purpose,
UML sequence diagrams were used to represent the evolving connections within
the service oriented architecture of the vehicle and its environment, and the in-
teractions among services. Such an abstract description may serve as the starting
point of a refinement process, that, by introducing implementation details, aims
to produce a working prototype.

In this paper we report an experience aimed at producing an early prototype
from such an abstract specification, through a first refinement step (from UML Se-
quence Diagrams to UML State Diagrams) and using an industrial strength, state
of the art, modeling tool capable of automatic code generation. This requires a sec-
ond refinement step, aimed at a more precise formalization of state machines. The
tool used in this experience was SCADE. The method described in [2] to bridge
the semantic gap between UML state diagrams and SCADE statecharts (SSM)
has inspired the work we have done on the SENSORIA automotive case study.
Formal verification has been used during the process to maintain consistency of
the transformation between UML state diagrams and SSM.

The paper is organized as follows: In Sect. 2 we present the SENSORIA case
study, by using both a natural language description and a first formal specification
by UML sequence diagrams. In Sect. 3 we briefly introduce the SCADE tool and
its formalisms, while in Sect. 4 we present the rules followed in order to translate
the UML model into a SCADE model, and a description of the obtained SCADE
model. Section 5 concludes the paper showing the prototype implementation, ob-
tained by automatically generated code for the business logic wrapped in a com-
munication interface to provide the implemented services.

2 SENSORIA Case Study

Today’s embedded computers in cars can access communication networks like the
Internet and thereby provide a variety of new services for cars and drivers. A set of
possible scenarios of the automotive domain have been examined within the scope
of the SENSORIA project, among which we select a car repair scenario low oil level
for illustrating the different techniques presented in this article.

Someof the functionalitydescribed in the scenarioarealready integrated inmod-
ern vehicles; other functionality might be available to drivers in the near future.

We have chosen this scenario because of its complexity, in which all aspects of
service interaction can be studied.

Theactors and their interactionwith the system in the scenario are the following:

– Sensor systems: cause low oil level alert
– Discovery engine: discovers services needed (towing, repair)
– Driver: communicates with towing and repair service
– Tow truck: receives GPS co-ordinates of stranded vehicle
– Repair shop: receives diagnostic data from stranded vehicle
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The sensor systems cause an in-vehicle diagnostic system to check why the oil level
has reached a minimum. The result of the diagnostic system is passed on to the dis-
covery engine, which then locates the appropriate services needed (adequate repair
shop, tow truck) based on the diagnostics, the driver’s preferences and the location
of the vehicle.

The main components of the overall car system architecture (as seen in Fig. 1)
that are involved in this scenario are:

1. Service Planning: is a specific software vehicle component, it manages some
events (e.g. anomalous sensor data) and reacts to dedicated enabling services
(e.g. In-car diagnostic service).

2. Communication System: enables communication between internal and ex-
ternal services of the vehicle.

3. In-cardiagnostic service: is an In-Vehicle integrated service,analyses events
reported by the Service Planning, and produces a problem description.

4. External diagnostic service: is provided by the vehicle producer. Data sen-
sors and the vehicle state are sent to a dedicated serverwhere they are analyzed
and compared to a diagnostic errors database; this server’s answers provide a
correct diagnosis.

5. On road repair service: is an external service that performs an automatic
repair service reservation.

2.1 Low Oil Level Scenario by UML Specification

The structure of a service oriented architecture can be visualized by UML deploy-
mentandcomposite structurediagrams.Adeploymentdiagram isused to represent
the (usually nested) nodes of the architecture such as hardware devices or software
execution environments. Figure 3 shows a UML deployment diagram of the car and
its environment as a first approximation of an architecture model related to archi-
tecture of the low oil level scenario.

In addition to UML deployment diagrams, which give a static view of the archi-
tecture, a representation showing the evolution of an architecture is required. UML
sequence diagramshave been used to represent the evolving connectionswithin the
service oriented architecture of the vehicle and its environment.

Several scenarios of evolution have been described using sequence diagrams. In
the following we show some of them; the so called “success” scenario, that refers to
the normal way of operation, is presented in Fig. 4, while Fig. 5 and Fig. 6 represent
alternative scenarios.

The two alternative scenarios presented here are related to two error situations:
other error situations concerning special cases have been considered and have been
singularly modeled by sequence diagrams.

1. Time Out error : The Communication System tries to connect to the External
Diagnostic Service, which is unable to answer (connection error); after a prede-
fined time interval the communication systemretries to connect; this procedure
is repeated until a connection is established.
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Fig. 2. System Flowchart

Fig. 3. Low Oil Level Deployment Diagram

2. Send & Receive data error : After establishing a connection with the External
Diagnostic Service, the vehicle GPS coordinates and diagnostics data are au-
tomatically sent to the External Diagnostic Service at regular intervals by the
communication system; if the communication systemobtainsno answers by the
External Diagnostic Service, then the vehicles data will be automatically sent
to the External Diagnostic Service at regular intervals by the communication
system until the service provides an answer.
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Fig. 5. - Time Out error - Low Oil Sequence Diagram

Fig. 6. Send & Receive error - Low Oil Sequence Diagram
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Fig. 8. External Diagnostic Service

Fig. 9. On Road Repair Service

2.2 Sequence Diagram

The synthesis of State Diagrams from Sequence Diagrams has been extensively
studied in the literature: [9] presents a survey of these works, while the first ap-
plication to UML Sequence and State Diagrams can be found in [7].

The UML state diagrams related to the main classes involved in the low oil level
scenario are given in Fig. 7, Fig. 8 and Fig. 9.

The State Diagram in Fig. 7 represents the behavior of the in-car communica-
tion system that have been implemented merging the above mentioned sequence
diagrams. The State Diagrams in Fig. 8 and Fig. 9 represent two other external
actors that provide the services.

A formal verification over the obtained state diagrams can be done in order to
check that the synthesis process has not violated some desired safety or liveness
properties, by means of model checking. The model checker UMC for UML state
diagrams and the UCTL state-action based temporal logic has been used for this
purpose (see [1,8] for a description of UCTL and UMC).

A typical property of interest in this case is for example: “If a low oil level alarm
is raised, then if no time-outs of any sort occur, a towing truck is eventually called”
that can be expressed using UCTL as:

AG[OilProblem](< TimeOut > true|AF < OrderOnRepairservice > true)
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3 The SCADE Tool-Suite

The SCADE (Safety Critical Application Development Environment) tool-suite
by Esterel Technologies is a set of tools able to support a whole model-based devel-
opment method. SCADE is mostly used in automotive and avionics applications,
and relies on diagrams and state machines, represents a graphical approach to for-
mal method. Its graphical modeling formalism benefits from deterministic formal
semantics, allowing the derivation of a clean mathematical model from a SCADE
design to the synchronous paradigm of the Lustre [4] language. The same determin-
istic model can be used for correct-by-construction automatic code generation and
formal verification [5].

SCADE provides a verification technique based on formal verification tools over
the model as well.

4 FromUML SD toSCADE SSM

The process we have followed in transforming the UML state diagrams to SCADE
Safe State Machines is inspired to that described in [2].

In particular, each UML State Diagram is directly mapped to a SCADE SSM,
due to the similarity of their internal structure. This step has been carried out
manually.

However SCADE is based on the synchronous data-flow paradigm. Inputs and
outputs of a SCADE block are typed data-flows. The type of a data-flow can be
simple (bool, int, real) or structured (a structure or tuple made of a set of typed
fields).

A SSM is a particular kind of block, so the messages and stored variables that
are used in UML to synchronize two State Diagrams have to be transformed into
data flow between blocks.

In the special case when the first field of a structured input data-flow is of type
bool (or when the input data-flow’s type itself is bool), this boolean value can
be used as a “signal presence status” in triggers of transitions in SCADE Safe
State Machines. Symmetrically, when the first field of a structured output data-
flow is of type bool (or when the output data-flow’s type itself is bool), this boolean
value represents the “signal presence status” of the output signal, set to true if
and only if the signal is emitted during the execution of a SCADE node. Input
or output flows associated with such a Boolean presence status can be used to
represent sporadic or transient signals which are considered only for some specific
executions of the SCADE node.

4.1 The SCADE Model

TheSCADE formalmodel of theLow-Oil-SystemusesSSMs (SafeStateMachines)
encapsulated into block diagrams as illustrated in Fig. 10, Fig. 11 and Fig. 12. The
global system named Low-oil scenario has been sliced in three different models: the
in-car subsystem and two out-car subsystems representing the diagnostic system
and the car repair shop.
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The modeling methodology used is the same for each subsystem, so we will
illustrate only the in-car subsystem model. The main object of this subsystem is
a generic high level data-flow block (Fig. 10). This main block includes three inter-
connected SSMs (Fig. 11). To this block input data flows from the in car sensors
system and from a gateway connected to external services arrive. From this in-car
system several signals are sent to the out-car services.

Fig. 10. Main in-car block

Although SCADE provides several kinds of data flow blocks we have modeled
our system using state machines only, for a direct correspondence to the UML State
Diagrams.

Figure 12 shows the main state machine, namely the Communication System,
which is actually similar to the corresponding UML one of Fig. 7.

4.2 Formal Verification of Safety Requirements

In order to validate the performed transformation on the models developed us-
ing the SCADE tool, several functional test scenario have been verified using the
SCADE simulator.

Moreover, the same properties that have been verified over the UML state dia-
grammodelhave alsobeenverified over theSCADE statemachines bymeans of the
native model checkerDesign Verifier tool, in order to check that the transformation
to SCADE has not introduced violations to the desired properties.
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Thepropertydefined above for theUMLmodel canbe expressed on thevariables
of the SCADE model as:

When the low oil sensor has become true and there are no time out errors
then the repair shop has to acknowledge the request sent to it (see Fig. 4).

The SCADE expression of the property has the form:

ServiceP lanning(OilProblem)
∧¬ CommunicationSystem(“T imeOutOccured”)

⇒ OrderOnRoadRepairService(AckData)

in which temporal aspects are however not represented. These are actually taken
into account in the graphical expression, displayed in Fig. 13, by memory elements
that record the occurrences of the events.

Fig. 13. The safety properties in SCADE

The verification of this property initially highlighted a problem about the imple-
mentation of the time out manager: after fixing this misbehavior the property has
shown to be valid.

5 FromSCADE Model to Code Prototype

After the model verification, the system constituted by three state models has also
been implemented using the capabilities of the automatic code generator.

To perform the simulation, some user interfaces have been implemented and
mapped to the model using a gatewayprovided by the SCADE tool. After the envi-
ronment supported simulation these user interfaces have been reused to stimulate
the automatically generated code.
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At the endof thewholedevelopmentprocesswehaveobtained three independent
systems, communicating by TCP/IP sockets, each of them exposing one or more
services. The simulated stimuli from the in-car side have been sent by the above
cited user interfaces.

The final structure is similar to that illustrated in the deployment diagram of
Fig. 3.

The complete prototype consists of some generic parts (the user interfaces and
the TCP/IP communication modules) and some specific parts (what is often called
“business logic”), that have been automatically generated in C language directly
from the models. At the end of the development phase we have obtained:

1. Ccodeautomaticallygeneratedby theSCADEtooland representing themodel
behavior.

2. Generic wrap code to build a dll containing the business logic C code above .
3. A generic TCP/IP module, to communicate with the environment (the other

two models: on road repair shop, external diagnostic services) that provide ser-
vices and vice versa.

4. An On Board Console (see Fig. 14) that is the user interface to simulate the
in-car sensor layer.

Fig. 14. On Board Console

The different parts have then been integrated in order to build an application able
to simulate the scenarios fromwhichwe have started the development process, with
all the concerned interactions.

6 Conclusions

We have reported an experience in deriving an executable prototype from a high
level specification of a service oriented application related to an automotive case
study. The experience has been made inside a research effort aiming at defining a
complete model-driven development process from high level specifications to exe-
cutable code, based on industrial-strength tools.
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In particular the purpose of the experience was to evaluate the adoption of a tool
likeSCADE,whichallows for codegeneration, formal verificationand test case gen-
eration, to refine the partly formalized UML state diagrams of the original specifi-
cations, with state machines having a formal semantics.

The followed development process, starting from a UML sequence diagram de-
scription of typical usage scenarios of the automotive case study, has included first
the synthesis of UML state diagrams from the sequence diagrams and then a re-
finement step mainly based on the translation of the state diagram model into an
executable SCADE model. Despite some semantic differences between the two for-
malisms, this translation has proved straightforward. Formal verificationby model
checking has helped to check the semantic consistency of the transformation.

The obtained SCADE model has allowed to exploit automatic code generation.
The generated code has then been embedded in a communication framework that
in the end has made it possible to produce an executable prototype of the initial
specification. The proposeddevelopment process,despite the usage of different for-
malisms, has resulted to be effective in producing in a short time a working pro-
totype from the original concept, thanks to the supporting tools (model checkers,
simulators and code generators) used at the various steps.
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Abstract. In this paper, we describe how Motorola has deployed model-
driven engineering in product development, in particular for the devel-
opment of highly reliable telecommunications systems, and outline the
benefits obtained. Model-driven engineering has dramatically increased
both the quality and the reliability of software developed in our organi-
zation, as well as the productivity of our software engineers. Our experi-
ence demonstrates that model-driven engineering significantly improves
the development process for telecommunications systems. We discuss the
elements we found most important for deployment of model-driven en-
gineering in a large product development organization: An appropriate
modeling language, a powerful domain-specific code generator, and a
deployment support team.

1 Introduction

Motorola has more than 15 years of history deploying model-driven engineering
techniques to develop highly reliable network elements for large-scale telecom-
munication systems. Model-driven engineering has dramatically increased the
quality and reliability of the developed software as well as the productivity of
the software engineers [1].

This paper describes the model-driven engineering approach Motorola has
been deploying. Model-driven engineering relies on capturing an application de-
sign in domain-specific languages; in Motorola, specifications are expressed using
UML profiles [2,3] such as the SDL Profile [4], using ASN.1 [5], or using cus-
tomized protocol-specification languages [6]. In the telecommunications domain,
the basic domain abstractions are asynchronous, communicating processes based
on finite-state machines and protocol data units. The specifications are subject
to validation by operationally interpreting the specification and through exe-
cuting formally defined test cases (written at the level of the design model in
a test-specific notation, typically, but not exclusively, TTCN [7]) against this
specification. Domain-specific programming knowledge is captured in code gen-
erators that transform the high-level designs into optimized product software
targeted to the chosen platform.

E. Gaudin, E. Najm, and R. Reed (Eds.): SDL 2007, LNCS 4745, pp. 35–53, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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We will summarize the productivity and quality gains observed and estimate
how widely these techniques are applicable to the development of telecommuni-
cations applications. We will also discuss the elements we found most important
for deployment of model-driven engineering in a large product development or-
ganization: An appropriate modeling language, a powerful domain-specific code
generator, and a deployment support team. This information should enable the
readers to decide if model-driven engineering will be beneficial to their respective
organizations.

2 Model-Driven Engineering

The conventional software development process begins with capturing product
requirements in design models, characterized by informal diagrams and pseudo-
code. Even if modern specification languages, such as UML or SDL, are being
used to capture the designs, these languages are typically used to develop in-
formal diagrams with unclear or imprecise semantics. These diagrams are then
hand-translated by a team of software developers into product code in the tar-
get language. The hand-written code undergoes inspection and testing and is
finally deployed at the target. A workflow following these lines is still the norm
in most software development organizations and is subject to several problems
that contribute to the often-tainted reputation of software engineering.

Firstly, the informality and imprecision of the notations used to capture prod-
uct designs tends to lead to misunderstandings between developers, in particular,
when development is conducted in a globally distributed manner. More often than
not, it is more luck than planning when the design diagrams are interpreted consis-
tently across geographically dispersed organizations. What one usually observes
instead is that when separately developed components are assembled into the final
product, they do not work fully together. In particular, misunderstandings due to
the informality of the designs in error situations or exception scenarios lead to the
introduction of defects that cause product failures.

Secondly, the translation of design documents into code by hand is error-prone
and slow. The resultant artifacts are difficult to reuse in similar applications since
much of the implementation detail of the product is intertwined with the code
derived from the designs.

Finally, defects are repaired at the level of the hand-written code resulting in
design documents that become hopelessly out of synch with the code and become
incomplete or, worse, misleading. If testing reveals serious misunderstandings of
requirements, it may be more efficient to abandon the outdated design model
and the current version of the hand code than it is to try to patch the hand code
in place, even given the accompanying loss of productivity.

In contrast, model-driven engineering proposes a software development pro-
cess that starting from product requirements aims to capture designs in stan-
dardized high-level notations with well-defined semantics. A precisely defined
semantics of the design model allows verification techniques to be applied to the
model. For example, state-space exploration can reveal concurrency pathologies
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or other hard-to-find defects in the design. If, in addition, one is able to oper-
ationally interpret the product designs, the correctness of these designs can be
established through simulation. Ideally, test cases are derived from the require-
ments and the designs are verified against these test cases. The designs are then
translated into product code by a code generator. Finally, the resultant code is
subjected to tests (again derived from the requirements) and is deployed on the
target platform.

Viewed in more detail, we divide model-driven engineering into two sets of
activities: In application engineering, we execute the model-driven engineering
process to develop products based on their software requirements. In addition,
model-driven engineering supplements application development with the devel-
opment of domain-specific capabilities.

In domain engineering, we first try to find a notation that is as close to the
application domain as possible. The closer the concepts of the design notation
are to the concepts of the application domain, the easier it will be to capture
the designs, and the more likely it will be that the designs are correct.

Secondly, we need to identify techniques to verify that the design documents
are correct, that is, that they reflect the application that we intend to build. This
may involve the development of simulation tools or of mathematical techniques
such as model checking.

Finally, we need tools to translate the design documents into product code
executing on the chosen target platforms.

Domain engineering generates a set of assets that can be drawn upon in ap-
plication development. Rather than code, following a model-driven engineering
process, the assets are the capabilities to produce software in a selected appli-
cation domain, including the domain-specific notations, verification tools, and
code generators. In application engineering, these capabilities are then deployed
to produce a particular product.

The model-driven engineering vision has been realized in a number of Mo-
torola business units in small steps: In 1989, a design simulation environment for
a proprietary design notation was developed and piloted in development projects.
When later, in 1991, the first commercial simulation tools became available for
a standardized notation (SDL), development teams began migrating to SDL [8].
In 1992, for the first time the complete software for a real-time embedded Mo-
torola product (a pager) was generated from high-level designs, without relying
on any hand-written code. It was not until 1994 that the first commercial code
generation tools with similar capabilities became available. Subsequently, sev-
eral Motorola business units adopted design simulation as a new development
paradigm. In 1998, the first shipping Motorola products were automatically de-
rived from high-level design specifications: a base station for the TETRA radio
communication system and a base site controller (BSC) for a telecommunica-
tions network. The subsequent years saw a steady increase in the penetration of
model-driven engineering, as legacy products were gradually replaced by newly
developed network elements.
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3 Benefits

The benefits afforded by model-driven engineering are productivity and quality
improvements. These benefits come from various sources:

– Design models are easier and faster to produce and test
– Labor-intensive and error-prone development tasks are automated
– Design effort is focused on applications, not on platform details
– Reuse of designs and tests between platforms or releases is enabled
– Design models can be verified through simulation and testing
– Design models are more stable, complete, and testable
– Standardized common notations avoid retraining of engineers
– The learning curve for new engineers is shortened

3.1 Productivity

Pushing much of the development detail into the code generator allows designs
to be more abstract, which results in designs that are easier to produce and
easier to show correct.

There are fewer inspections required to ensure product quality than when
using conventional development. On average, developers rely on three inspection
cycles of the model instead of four cycles of the source code when compared to
following the conventional process. In addition, inspection rates are higher and
have increased from 100 source lines of code per hour to in between 300 and
1000 “source lines” of models per hour. Thus, not only are fewer inspections
required, but also the remaining inspections are much more efficient and at a
level of abstraction more amenable to inspection by developers.

Code automation on average results in a five-fold increase in the number
of source lines of code produced per staff months over the development life
cycle. The effort spent in the design phase increases (from a traditional waterfall
point of view), but this is more than made up by the dramatic reduction in
coding effort. While the overall effort improvement is straightforward to measure,
the improvement in each development phase is difficult to quantify due to a
fundamental change in the process itself. The design phase changes from a loosely
defined and rarely revisited step to a central aspect of the development that is
not only kept up to date, but is also typically used for multiple product versions
as part of a product-line architecture [9].

Code generators have reached a level of maturity such that effectively no errors
are being introduced into the resultant code. For example, over the last several
years, only one field failure was logged against the code generator itself, which
has produced many millions of lines of code deployed in the field. Subsequently,
no effort has to be expended to correct coding defects.

Figure 1 shows the productivity improvements (as measured in assembly
equivalent lines of code produced per staff month) in the development of several
features (labeled F1 through F5) on a BSC. The chart compares the productivity
rates achieved using the conventional life cycle with those using model-driven
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Fig. 1. Productivity improvement for network element applications
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engineering. Figure 2 shows effort reduction (in terms of staff months) dur-
ing the development of typical protocol data marshaling code (the areas with
thick outline indicate the testing effort). Data marshaling is the process of en-
coding/decoding a data element (e.g., an integer, a structure, a linked list) for
transmission to/from another entity over a predefined protocol.

Automation of labor-intensive and error-prone development tasks results in
additional productivity improvements. We have seen a dramatic reduction in the
turn-around time for fixes during process test execution. A process test cycle
involves: (i) fixing the defect in the model (rather than the code), (ii) writing a
test case, (iii) generating the corrected code, and (iv) automatically executing
the complete regression test suite (which in this particular example consisted of
over 10,000 tests). As shown in Fig. 3, the test cycle across four releases of two
network features (F1 and F2) has been reduced from 25-70 days to 24 hours.

Similar results can be observed in box and system tests. In many systems,
over 90% of the tests are automated using TTCN scripts, which has led to a
30% reduction in box-test cycle time.

3.2 Platform Targeting

Model-driven engineering removes the need for embedding platform characteris-
tics and domain detail into the designs (again impacting productivity and quality).
Following the conventional development process, much irrelevant information—
irrelevant from the point of view of system functionality—had to be kept in the
design document to ensure that it be considered during coding. This extraneous
information negatively affects productivity and quality.

For example, an important feature of a high-availability middleware layer
developed by Motorola is the ability to journal ongoing transactions, allowing a
computing node to recover from failure and continue execution at the point where
a run-time fault occurs. The code necessary to perform the journaling should
not be captured in the design (as it is not part of the functional requirements
of the application) but should instead be added by the code generator. Such an
approach not only keeps the designs abstract and easier to produce and verify,
but also allows experimentation with different levels of journaling granularity to
find the right balance between availability and performance.

Avoiding embedding implementation detail into design enables rapid retar-
geting of applications to different platforms. A given design can be moved from
one platform to another without affecting the design. As an example, we moved
a BSC application from a rack of MC6809 cards with distributed memory to
a shared-memory computer. All changes required to the software architecture
were performed by the code generator. In another example, an application was
migrated to a lower-cost platform, where the code generator had to provide SysV
message queues transparently to the application and generate code in a manner
so as to avoid deadlock problems (on the cheaper system, the same thread could
not acquire the same mutex repeatedly). The effort was 10 staff days to capture
these differences in the code generator as compared to an estimated 80 days for
hand porting the code.
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Fig. 4. Quality improvement for network element application

Incorporating platform specifics into the code through a code generator also
enables engineers to experiment at a low cost with alternative implementation
strategies, software architectures, or hardware choices.

Finally, the separation between platform-specific information and application
information supports more efficient team structures. Platform experts capture
their knowledge in code generators, and the application development teams can
focus exclusively on the design and testing of new applications.

3.3 Quality

The models required as input for code generation are more complete and can be
verified through simulation (or other techniques), resulting in significant qual-
ity improvements. The quality impact of model-driven engineering is dramatic
and almost guaranteed. It is largely a consequence of the increased phase con-
tainment effectiveness enabled by semantically precise and operationally inter-
pretable specifications.

Motorola data shows that simulation is about 30% more effective in catching
defects than the most rigorous Fagan inspections. This is true for both overall
faults and serious faults. Based on this fact alone (assuming that the code gen-
erator does not introduce additional defects), we can expect a 3X reduction in
defects, which is also borne out by the data: In Fig. 4, from the development
of five features (F1 through F5) on a network element, we see defect reduction
rates well beyond that number. Applications have recently been developed with
zero design defects.

Approximately 50% of defects are requirements errors. These are typically
the hardest errors to find, and thus also the costliest. Working with models of
requirements enables mathematical techniques to be applied to these models,
which enables detection of these hard-to-find defects. In the telecommunications
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Fig. 5. Cumulative fault discovery rate across the development life cycle

domain, many such errors are due to concurrency pathologies, i.e., they result
from unforeseen interactions of concurrently executing system components. We
have developed techniques based on theorem proving and realized these in tools
that detect such situations [10]. Each project that has leveraged these techniques
has demonstrated that a substantial number of requirements defects that had
previously escaped to later development phases can be discovered early.

Figure 5, which shows percentage of total defects found over time, illustrates
that faults are found much earlier following model-driven engineering than with
the conventional process. Finding defects sooner is significant, since it is much
cheaper to fix defects earlier. Our internal data confirms Boehm’s observation
that the cost of fixing defects increases exponentially with the distance between
where a defect is sourced and where it is discovered [11]. Finding double the
errors in the design phases as shown in Fig. 5 translates into large cost savings.

The availability of tools operating on design notations encourages convergence
on standard common notations with the associated benefits of sharing expertise
and projects between different development teams. The learning curve for new
engineers to get familiar with a product has been substantially shortened. When
a new engineer studies the application models, domain knowledge is exposed
rather than obfuscated in the product code. Consequentially, the time required
for a new developer to acquire sufficient domain knowledge to become productive
has been shortened by 2-3X.

4 Penetration and Applicability

Deployment of model-driven engineering varies substantially between product
teams. Figure 6 shows the penetration across the components of a release of a
telecommunications system, as of 2002. The size of each chart indicates the rel-
ative amount of effort that went into producing the corresponding component.
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The bars, from left to right, indicate the percentage of software that has been de-
veloped leveraging model-driven engineering in design, design verification, code
generation, and box test, respectively. For example, the BSC development team
has used design modeling and code generation for more than 70% of their ap-
plication code, but has not used simulation to verify the designs. The team
developing the surveillance gateway used design modeling, simulation, and code
generation for more than 80% of their application code, and the developers were
able to drive their box tests from design models as well. On some system compo-
nents, the code generation rates are still lower due to the large amount of legacy
code present.

We have analyzed the source code for each of the system components of a
release of a telecommunications system, categorized the modules of source code
by the design elements from which they are typically derived, and grouped the
code into four buckets, as shown in Fig. 7:

– Code that is specified by state machines or similar mechanisms (such as
decision tables or activity graphs)

– Code that is highly algorithmic in nature or expresses data manipulations
– Code that is low level and often not captured in detail in designs
– Code that is described by other means, such as GUI layout or database

design tools.

The size of each pie reflects the relative effort that went into developing the
particular network element; the individual sections reflect the design elements
characterizing that portion of the developed network element. For example, 56%
of the code on the BSC can be characterized by state machines. This software
is the main control logic of the application, routing calls between base stations
(similar to cells in a mobile telephony system) and the mobile switching system.
About 39% of the code is characterized by computation, comprising the packing
and unpacking of protocol data units and the evaluation of signal quality to
determine whether a call should be handed over between base stations. About
5% concerns the interface to the transcoders and is usually stubbed out in the
designs.

The distribution of the four categories varies between network elements. Our
experience is that all of the state-machine oriented code can be derived from
designs as can most or all of the algorithmic code, depending on the availability
of a suitable action language in the design notation or domain-specific notations
such as those described earlier for PDU marshaling code. The low-level code is
unlikely to be generated automatically. Mileage in the “other” categories varies,
but this code comprises a relatively small percentage of the overall application.

Rolling up the data for various telecommunication systems reveals that the
potential for model-driven engineering is at least 73%, but may go as high as 96%.
The individual percentages are less important than the message: a significant
portion of a telecommunication system is amenable to code generation from
high-level designs.
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5 Representation of Models

The fundamental assumption of model-driven engineering is that the model is
the central element of the development process and that all activities in the
development process are aimed at creating the model or deriving other artifacts
from the model. It is, therefore, not surprising that a critical aspect of the
successful use of model-driven engineering is how to represent a model.

WhenMotorola embarkedondeployingmodel-driven engineering, thedominant
modeling language for real-timetelecommunicationapplicationswasSDL [8],while
UML [12] had emerged as the dominant modeling language for general-purpose
computing applications.

While UML aims to be applicable to a wide range of application domains, SDL
has focused on the modeling of reactive, state/event driven systems typically
found in telecom applications. In order to subsume the possible variances of
application domains, UML does not define all language concepts (such as its
concurrency semantics) to the level of detail necessary to allow unambiguous
interpretation. SDL, on the other hand, gives precise, formal semantics for all its
concepts. In addition, UML relies on implementation languages for executable
specifications; SDL is a language for specifying executable models independently
of an implementation language.

After the emergence of UML, a typical SDL usage scenario was that UML is
used for describing the entities of a system and the relationships these entities
bear to each other during analysis modeling, while SDL is used for detailed
design. Our experience revealed that these design notations had shortcomings
that limited the applicability of code generation, and the combined usage model
proved awkward [13,14]. In response, an enhanced version of SDL was adopted in
1999, supporting language elements required by our engineering teams. In 2003,
the latest release of UML was adopted, integrating the lessons learned from SDL
deployment.

A smoother integration of these notations was provided by the ITU Recom-
mendation Z.109 which defines the SDL UML Profile [4]. Thanks to this profile,
users can easily transition from the more abstract UML analysis models to the
unambiguous and executable SDL design models. The SDL UML profile allows
users to treat an SDL model as a specialization of the generic UML model thus
giving more specific meaning to entities in the application domain (blocks, pro-
cesses, services, gates, channels, etc.). A number of features have been introduced
in SDL which directly support SDL and UML convergence:

– UML-style class symbols provide both partial type specifications and refer-
ences to type diagrams containing the definition of that type;

– UML-style graphics for SDL concepts such as types, packages, inheritance,
and dependencies;

– Composite states that combine the hierarchical organization of Statecharts
with the transition-oriented view of SDL finite state machines;

– Interfaces that define the encapsulation boundary of active objects; and
– Associations between class symbols.
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While UML has its focus and strength on object oriented data modeling, SDL
has its strength in the modeling of concurrent active objects, of the hierarchical
structure of active objects, and of their connection by means of well-defined
interfaces. As a response to user requirements for more design level concepts as
well as for better support of object-oriented modeling of active objects, the SDL
heritage provides the following concepts:

– A complete action language that makes SDL independent of implementation
languages. In line with the rest of SDL, behavior is specified in an imperative
style and may be mixed with graphical SDL.

– Object oriented data based on single inheritance and with both polymorphic
references (objects) and values, even in the same inheritance hierarchy. Type
safety is preserved in the presence of covariance through multiple dispatch.

– Composite states that are defined by separate state diagrams (for scala-
bility); entry/exit points are used instead of state boundary crossing (for
encapsulation), any composite state can be of a state type (for reuse), and
state types can be parameterized (for even more reuse).

– Object-orientation applied to active objects including inheritance of behav-
ior specified through state machines and inheritance of the (hierarchical)
structure and connection of active objects.

– Virtual types that allow the redefinition of inherited types.
– Constraints on redefinitions in subclasses and on actual parameters in pa-

rameterization that afford strong error checking at modeling time.

In the latest revisions of UML [15] it has been recognized that UML greatly ben-
efits from inclusion of above concepts. The SDL UML profile provides identifies
a subset of UML organizations can focus on when modeling.

6 Code Generation

The most crucial component in the deployment of model-driven engineering
proved to be a code generator that is able to translate high-level design specifi-
cations into product-quality code [16]. Code generators are the most crucial not
only because they dramatically decrease the effort spent on translating specifica-
tions into code and make this process quickly repeatable, but also because users
did not want to spend the necessary effort to make design models executable if
they later had to translate those models into code manually (users did not want
to “code twice”, as they tended to put it). This was the case independent of that
design simulation alone had a dramatic impact on the quality of the developed
product.

Commercial tools supporting code generation in the embedded system domain
have become available. While these tools do generate code corresponding to a
complete application (rather than merely header files or code templates as was
the case in the past), by necessity the resultant software is generic and does not
include any code that is imposed by specifics of the application domain. Unfortu-
nately, such generic code is rarely sufficient to ship a product. Even in the most
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successful deployments of commercial tools in our organization, engineers had to
add a significant amount of hand-written code linking the generic application to
the specific platform. In addition, these tools usually do not generate code that
marshals a PDU in and out of the generated application.

Thedownside of adding hand-written code into the code that has been generated
by the tool is apparent: The necessary integration as well as any domain-specific
optimizations or data realizations are difficult to write and require intricate under-
standing of the code generators, as they have to be fit into code that the engineers
did not write and should not have to understand. Architectural assumptions may
have tobe retrofitted into the generated code. The resultant product becomesmuch
harder to maintain and cannot easily be ported to new target platforms. Even if a
tool maintains any changes applied to the generated code across design modifica-
tions (a process usually referred to as “round-trip” engineering), these shortcom-
ings still apply.

In certain application domains, producing code in a generic manner may not
even work. In particular, in highly constrained domains such as subscriber ap-
plications, when commercial code generators have failed it is more often than
not due to unacceptable memory usage.

To work around these difficulties in developing code generators, we tried to
understand how an engineer develops code starting from high-level designs. En-
gineers are usually very skilled and know a lot about the process of translat-
ing product designs into efficient product code that will satisfy the constraints
of their application domains. We identified several different “kinds” of knowl-
edge that engineers utilize in this process: general purpose coding knowledge,
domain-specific knowledge, and product-specific knowledge. We developed the
Mousetrap code generation framework [17,16] which enabled the construction
of compilers that rely on these same types of knowledge. In developing model
compilers, we capture the knowledge leveraged by experienced engineers in a
reusable form, store it in a knowledge base, and apply it to input specifications
by the compiler to generate the target code.

We rely on transformation rules to codify programming knowledge. Transfor-
mation rules are recipes for taking a fragment of an input model and transform-
ing it into a fragment of an output program. Each rule consists of three parts:
a pattern that describes the fragment of the input program we want to operate
on, a replacement that describes the final fragment of the output program we
want to produce, and an applicability condition that tells us whether a given
matched fragment of the input program can be legally transformed into the
replacement fragment. Transformation rules are correctness preserving rewrite
rules over parse trees. Pattern and replacement are written in the grammar of
the programming language we are manipulating, but contain variables which
stand for parts of the program we want to abstract away from. The applicabil-
ity condition ensures that the rule is not applied in situations where the pattern
matches a fragment of the input program but where we would introduce an error
would we perform the replacement.
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The heart of the Mousetrap system is a rewrite engine which traverses an in-
put program, finds all the locales where a pattern in a set of transformation rules
matches a fragment of the input program, and performs all those replacements
that are permitted by the applicability conditions. The search for matches takes
into account any equational theories that constructs of the programming lan-
guage may be subject to, such as associativity, commutativity, idempotence, or
a special list theory. The input program can be examined using various traversal
strategies, from outside-in or from inside-out, in single steps, or until a fix-point
is reached. In addition, the constructs used to express programming language
grammar productions are typed, and program transformations take these types
(as well as subtyping) into account. Rewriting is order-sorted.

Each of these transformation rules makes only a small change to the program.
Consequentially, the program evolves in many steps, requiring thousands (or
hundreds-of-thousands) of rewrites. Because these transformation rules are small
and relatively simple, they are easy to show correct. But for the same reason
the transformation rules have to be applied fully automatically. Interactive rule
application is completely unfeasible.

We have divided the transformation from high-level designs to product code
into a sequence of phases. Each phase essentially manipulates a different lan-
guage, where each language gradually becomes closer to the target language in
its semantics and underlying assumptions. The bulk of the transformations are
within each phase or language layer; a simple set of transformations moves the
program from one language layer to the next. At a rough-level of abstraction,
the program proceeds through the following language layers: We begin with a
canoncialization step where we replace similar constructs in the specification
language with canonical forms that are easier to manipulate subsequently. Next
we add domain-specific tasks. Next domain-specific specification constructs are
realized. In the telecommunications domain, these are primarily extended finite
state machines and the logical data layout defining a PDU. We then realize
abstract data types, selecting an appropriate implementation based on domain
or usage (for example, “set-as-bitvector” or “set-as-hashtable”). The program is
then subject to extensive optimizations. Next we add product-specific implemen-
tation detail and map the program to the underlying computing or middleware
platform. In this step we may provide automated memory management, process
handling, light-weight multi-threading or simulation of concurrency, and so on.
At this point, the program is transformed into the target language, usually C,
and a final optimization step is applied.

In the following we list examples of transformations that are applied during
the translation from designs to code. We apply an extensive set of standard
techniques for realizing data structures and for optimizing data structures:

– Recognize clichés with particular efficient implementation
– Implement replicated processes as “call record” structures
– Combine identities with common sub-expression elimination
– Remove levels of indirection by lifting pointers
– Maintain information through finite differencing
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– Compute change to data structures incrementally
– Propagate estimates of the size of data structures
– Allocate larger data structures in parcels of a size efficient for the target

hardware
– Minimize heap allocation

Many possible optimizations are often not applied systematically by engineers
when writing code by hand, but can be leveraged to great benefit by a code
generator:

– In-lining of function and iterator calls
– In-lining of data structures
– Partial evaluation of function calls
– Constant propagation
– Context-dependent simplification
– Expression caching
– Common sub-expression elimination
– Special idioms for efficient implementation of primitives
– Source-level peephole optimizations
– Replacing shifts by masking and xor

Typical implementation choices that are applied by the Mousetrap system:

– Imposition of architectures, e.g., realizing processes as threads, as tasks, or
eliminating them altogether

– Imposition of most efficient communication mechanism, such as interprocess
communication, shared memory, remote procedure call, or method invoca-
tion on a distributed processing environment

– Imposition of non-standard data realization, such as inlining objects, ex-
ploding structures, or introducing pointers in order to minimize copying of
data.

The resultant code size for infrastructure network elements compares favorably
to hand-written code. In Fig. 8, examples “A1” and “A2” are network elements
showing that that code size has been reduced by as much as 30% as compared
with the hand-written application. Even for subscriber products, code size is
approaching that of hand-written code. Application “A3” in Fig. 8 shows a sub-
scriber device; its code size is only 9% above the estimate for hand-written code,
and it is 42% smaller than the size of code obtained from the best commercial
tool we tried.

Execution speed has met or exceeded performance targets for each delivered
code generator. Figure 9 shows how the call execution time using the auto-
matically generated code on two network elements (A1 and A2) closely tracks
and at times improves over the call execution time of hand-written code for
the same network element at various call loadings. A consequence of the better
performance of the generated code for the middle call phases is a substantially
reduced drop-call rate for the generated code.

The bottom line is that Mousetrap code generators have reached a level of
maturity that allows them to be deployed for the development of performance-
critical applications.
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7 Support Model

In order to support the widespread roll-out of model-driven engineering in our
organization, we have formed a support team to assist Motorola businesses in
the deployment of code generation.

The code generation support team maintains a large body of programming
knowledge codified in the form of program transformation rules. This knowledge
comprises general purpose programming knowledge, domain specific knowledge,
and product specific knowledge, as described earlier. Once engineering has iden-
tified the domain constraints and the architectural constraints of a new product,
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the constraints are used to identify the subset of the programming knowledge rel-
evant to this application. This relevant subset is extracted and packaged together
with design and programming language parsers and printers as well as the rule
application engine into a domain-specific compiler. This compiler is delivered to
the application development team.

The domain-specific compilers transform the application designs into highly
optimized product code. This code is optimized with respect to the domain
constraints the development team had originally identified and will contain many
other application-specific details. If the starting point is a subscriber device, for
example, the code will be geared toward the needs and constraints of a subscriber
device, as well as the peculiarities of the supported protocols and hardware.
The generated code would not work, or would work very poorly, if used on
an infrastructure product. If code for an infrastructure product were desired, a
compiler specific to that domain would have been delivered.

If a completely new product or a product for a domain for which the program-
ming knowledge has not yet been codified is to be developed, the code generation
support team works with the application development engineers to identify and
codify domain-specific and product-specific programming knowledge and then
codifies this knowledge. Once the knowledge has been captured and is added to
the Mousetrap rule base, the deployment process continues as described before.

The support team aims to deliver code generators that are optimized to the
architectural and performance constraints of the chosen target platform and
that take into account any other domain-specific information that is applicable.
Identifying and codifying programming knowledge may require several iteration,
until a solution is obtained that completely satisfies all constraints. A code gen-
erator is supported until the product that it is used in is retired. This close style
of interaction is necessary, as often the requisite knowledge or constraints are not
known ahead of time and are only discovered in light of delivered initial releases.

For example, Fig. 10 depicts consecutive releases of a code generator for a pro-
tocol stack on a subscriber device (the axis indicates consecutive development
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weeks). The developers had attempted to use a commercial code generator pre-
viously (shown as reference), but the generated code was almost twice as large
as was feasible, given the allocated direct material costs. The first iteration of
the Mousetrap code generator came in significantly better, but still far from the
target. The support team then iteratively refined this code generator, bringing
down the code size further with each release. A satisfactory level of performance
was reached at 9% above the estimate for hand-written code.

8 Summary

In this paper, we have summarized the benefits that Motorola has obtained
from the deployment of model-driven engineering in the development of reliable
embedded systems, in particular, network elements for telecommunications sys-
tems. The benefits afforded by model-driven engineering result in both quality
improvements and productivity improvements. In the development of telecom-
munication systems, a large portion of developed software, in our estimate at
least three quarters of the total software, is amenable to leveraging model-driven
engineering techniques.

We have also discussed each of the three elements we found most important
for deployment of MDE. The first is a modeling language that provides the ap-
propriate domain-specific abstractions and the ability to operationally execute
the model. This element is critical for allowing the model to be a natural ex-
pression of the design without extra baggage and for enabling early testing. The
second is a powerful domain-specific code generator. This element is one of the
key enablers of MDE, allowing the model to be free of platform specifics and
allowing the model to be maintained instead of the code. The third element is a
deployment support team. As with any development paradigm, it is unrealistic
to assume that engineers fresh out of college will have the necessary experience
to be able to develop large-scale industrial systems. MDE adds the burden that
it is sufficiently new and different to require a support team (process, language,
modeling and abstraction, target platforms, etc.) to ensure success.
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Abstract. Software metrics are an essential means to assess software
quality. For the assessment of software quality, typically sets of com-
plementing metrics are used since individual metrics cover only isolated
quality aspects rather than a quality characteristic as a whole. The choice
of the metrics within such metric sets, however, is non-trivial. Metrics
may intuitively appear to be complementing, but they often are in fact
non-orthogonal, i.e. the information they provide may overlap to some
extent. In the past, such redundant metrics have been identified, for ex-
ample, by statistical correlation methods. This paper presents, based on
machine learning, a novel approach to minimise sets of metrics by identi-
fying and removing metrics which have little effect on the overall quality
assessment. To demonstrate the application of this approach, results from
an experiment are provided. In this experiment, a set of metrics that is
used to assess the analysability of test suites that are specified using the
Testing and Test Control Notation (TTCN-3) is investigated.

1 Introduction

Quantitative methods like software metrics are a powerful means to assess and
control software development [1]. In software development process maturity mod-
els, like Capability Maturity Model Integration (CMMI) [2] or Software Process
Improvement and Capability dEtermination’ (SPICE) [3], the usage of metrics
is considered as an indicator of a high process maturity. For the quality assess-
ment of test suites that are specified using the Testing and Test Control Nota-
tion (TTCN-3) [4,5], we have thus proposed a set of several TTCN-3 metrics [6].
When we presented and discussed these metrics at the Fifth International Work-
shop on System Analysis and Modelling (SAM’06), it was pointed out that the
assessment of TTCN-3 specifications depends on the quality characteristic to be
evaluated and that several metrics are needed to measure all aspects of a charac-
teristic. Therefore, we developed subsequently a comprehensive test specification
quality model [7] that takes various different quality characteristics into account
to asses the quality of a test specification. Following the ISO/IEC 9126 stan-
dard [8], each quality characteristic is divided into further sub-characteristics
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and each sub-characteristic is quantified using several metrics. By taking the
measurements of the different metrics into account, a classification of the over-
all quality of a test specification can be made. But, as also pointed out at the
discussion at SAM’06, this may lead to a cluttered set of metrics that is hard to
interpret.

Hence, we developed a machine learning approach that can be used to optimise
a set of metrics and that helps to judge whether a new metric should become part
of the metrics set (i.e. measures a new quality aspect) or whether it is already
subsumed by other metrics (i.e. the new metric leads to the same conclusion
as other metrics already do). In this paper, we present our machine learning
approach and show its practicability by applying it to a set of TTCN-3 metrics.

This paper is structured as follows: after this introduction, we provide foun-
dations on software metrics and machine learning in Sect. 2. As our main contri-
bution, we present our approach of using learning techniques to evaluate metric
sets in Sect. 3. Then, in Sect. 4, we demonstrate the usage of this approach by
applying it to a suite of TTCN-3 metrics. Finally, we conclude with a summary
and outlook.

2 Foundations

In this section, foundations on software metrics and on pattern analysis using
Probably Approximately Correct (PAC) learning are presented. In our case, the
patterns to be learned will be the varying values of a metric set that contribute
to a corresponding overall classification of the quality of a test specification.

2.1 Software Metrics

According to Fenton et al. [1], the term software metrics embraces all activities
which involve software measurement. Software metrics are mostly used for man-
agement purposes and quality assurance in software development. They can be
classified into measures for attributes of processes, resources, and products.

For each class, internal and external attributes can be distinguished. External
attributes refer to how a process, resource, or product relates to its environ-
ment; internal attributes are properties of a process, resource, or product on
its own, separate from any interactions with its environment. Internal product
attributes are typically obtained by static analysis of the code to be assessed.
External product attributes on the other hand are normally gained by accumu-
lating quantitative data of interest during program execution.

Internal product metrics can be structured into size and structural metrics [1].
Size metrics measure properties of the number of usage of programming or speci-
fication language constructs, e.g. the metrics proposed by Halstead [9]. Structural
metrics analyse the structure of a program or specification. The most popular ex-
amples are complexity metrics based on control flow or call graphs and coupling
metrics.

Concerning metrics for measuring complexity of control structures, the most
prominent complexity metric is the cyclomatic complexity from McCabe [10,11].
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It is a descriptive metric, i.e. its value can be objectively derived from source
code. By additionally using threshold values, this metric becomes also prescrip-
tive [12], i.e. it helps to control software quality. For example, when threshold
violations of the metric values are analysed, it can help to identify complex
modules which shall be split into several simpler ones [11].

Metrics are often used in the context of a quality model. The ISO/IEC stan-
dard 9126 [8] defines such a quality model for internal quality, external quality,
and quality-in-use of software products. It is possible to apply such quality mod-
els to test specifications as well [7]. The ISO/IEC quality model describes each
distinct quality characteristic of a software product by further subcharacteris-
tics that refine each characteristic. To quantify the quality with respect to each
subcharacteristic, according metrics can be used. Based on these metrics and
related thresholds, an overall classification of a given software product can be
made. The actual scheme used for the overall classification may vary from project
to project, e.g. one project may require a scenario in which all the calculated
metric values need to be within the corresponding thresholds, whereas in other
projects it may be sufficient if only a certain percentage of the involved metrics
do not violate their thresholds.

To make sure that reasonable metrics are chosen, Basili et al. suggest the
Goal Question Metric (GQM) approach [13]: First, the goals which shall be
achieved (e.g. improve maintainability) must be defined. Then, for each goal, a
set of meaningful questions that characterise a goal is derived. The answers to
these questions determine whether a goal has been met or not. Finally, one or
more metrics are defined to gather quantitative data which give answers to each
question. The GQM approach, however, does not make any statement on the
similarity of metrics and whether certain metrics are statistically replaceable by
others.

There are numerous publications that try to tackle the orthogonality problem
of software metrics, i.e. they try to identify those measures in a set of met-
rics that do not deliver any meaningful additional information. One early work
of Henry et al. [14] demonstrated the high-degree relationship between the cy-
clomatic complexity and Halstead’s complexity measures by means of Pearson
correlation coefficients. A good overview on further related work is provided by
Fenton et al. [1]: they list approaches to investigate the correlation of metrics
using Spearmans’ rank correlation coefficient and Kendall’s robust correlation
coefficient. To express the nature of the associations, regression analysis has been
suggested. Furthermore, principal component analysis has been used to reduce
the number of necessary metrics by removing those principal components that
account for little of the variability. We are not aware of any approaches that use
a learning approach as described in the remainder of this paper.

2.2 Extracting Pattern From Data

The so-called Keplers’s third law states that the squares of the periods of plan-
ets are proportional to the cubes of their semimajor axes. The law corresponds to
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regularities present in the planetary data recorded by Tycho Brahe. Johannes
Kepler’s extraction of these regularities from Brahe’s data can be regarded as
an early example of pattern analysis.

There are various models to formalise such pattern analysis problems in di-
verse degrees of generality. A very prominent one is Valiant’s learning model
[15,16] that is outlined in the following.

We are given an input space X ⊂ Rn. Usually we think of X as being a set of
encodings of instances or objects in the learner’s world. Examples are rectangles in
the Euclidean plane R2, two 2-dimensional arrays of binary pixels of a fixed width
and height when it comes to recognising characters, or simply Boolean vectors of
length n. The input space is the data source in this model. To this end, a random
element X ∈ X is given. It induces an arbitrary distribution PX on X.

A concept over the input space X is a +1/− 1-valued function on X or equiv-
alently a subset of X. A concept class C is a collection of concepts. Examples are
all rectangles in the Euclidean plane R2, pixel representations of a given alpha-
bet, and all Boolean monomials of a fixed length k over the Boolean variables
x1, x2, . . . , xn.

An algorithm A is a PAC learner of the concept class C by a hypothesis class
H, which usually comprises C, if for every accuracy ε > 0 and every confidence
δ > 0 there is minimal sample size mA(ε, δ) such that for every target concept
g ∈ C, all m ≥ mA(ε, δ), and all distributions PX the following property is
satisfied. Let A be given access to a learning sample

U (m) := ((X1, g(X1)), (X2, g(X2)), . . . , (Xm, g(Xm))) (1)

of length m, where (X1, X2, . . . , Xm) is a sample drawn independently from
X according to the distribution PX . Then A outputs with probability at least
1 − δ a hypothesis H := A

(
U (m)

)
∈ H satisfying err(H) ≤ ε. This probability

is taken over the random learning samples according to (1) and any internal
randomisation, if the learning algorithm is a probabilistic one. The error err(h)
of any hypothesis h ∈ H is defined by P (h(X) 
= g(X)). The preceding condition
is sometimes referred to as consistency of the learning algorithm A.

In order to devise a PAC learner, it is reasonable to output a hypothesis h
that performs faultless on the learning sample (1). To ensure that this will work,
especially to avoid what is called overfitting, it is, moreover, necessary to bound
the capacity of the hypothesis class H. Very popular capacity measures are the
Vapnik-Cervonenkis dimension [17,18,19] and the Rademacher complexity [20].
For an overview see [21,22].

PAC learning can be canonically generalised to what might be called pattern
analysis or pattern extraction. Starting point is the observation that the second
components Yi of the learning sample

U (m) := ((X1, Y1), (X2, Y2), . . . , (Xm, Ym)) (2)

need not always be totally depend on the first components Xi. Again we restrict
ourselves to classification problems, that is to the cases, where the so-called
output variables Yi take values in the output space Y = {−1, +1}, The product
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U := X × Y is denoted as learning universe. Using a random variable U =
(X, Y ) ∈ U, it is regarded as source of data. The first component X of U is
called input element, the second component Y the output variable. Analogous
to the cases of PAC learning, the distribution PU with the random element
U induced on the learning universe is not determined, but sometimes it has
guaranteed qualities.

A pattern analysis algorithm A by a pattern class P ⊂ Map(U, {−1, +1})
takes a learning sample (2) as input. It computes a pattern A(U (m)) ∈ P that
“approximates” the risk infimum riskP := infπ∈P riskπ of the class P in the
sense of consistency defined below. The risk of a pattern π ∈ P , which is denoted
by riskπ, in turn is defined to be the expected value E π(U) of π(U). On overview
on this setting is given in [22].

In this paper, we make only use of pattern classes consisting of patterns of the
type �0/1(y, h(x)), where h ranges over a hypothesis class H ⊂Map(X,{−1, +1}),
and �0/1 is the so-called 0/1-loss function: �0/1

(
y1, y2

)
= 1 − δ

(
y1, y2

)
, where δ

is the Kronecker function.
An example for a guaranteed quality mentioned above is that Y equals g(X), for

some target concept g belonging to the concept class C. If the pattern class is formed
by means of a hypothesis class H ⊇ C, then riskπ = errh provided that π(x, y) =
�0/1(y, h(x)). That way PAC learning is a special case of pattern extraction. From
now on we identify the pattern π(x, y) = �0/1(y, h(x)) with the hypothesis h(x),
and consequently the pattern class P with the hypothesis class H.

A pattern analysis algorithm A by H is called consistent, if for every accuracy
ε > 0 and every confidence δ > 0 there is a minimal sample size mA(ε, δ) such
that for all m ≥ mA(ε, δ), and all distributions PU the following condition is
fulfilled. Taking the learning sample (2) as input, A outputs with probability at
least 1 − δ a hypothesis H := A

(
U (m)

)
∈ H satisfying

riskH ≤ riskH + ε. (3)

The problem with the risk of a hypothesis is that it cannot be calculated since
the distribution PU is not determined. Consequently, one cannot try to compute
a hypothesis of minimal risk. The empirical risk minimisation induction principle
ERM recommends a pattern analysis algorithm to choose a hypothesis h that
minimises the empirical risk

riskemp

(
h

∣∣∣U (m)
)

:=
1
m

m∑
i=1

�0/1 (Yi, h(Xi)) (4)

on the learning sample (2). A pattern analysis algorithm A obeying ERM is
consistent, if, for example, the Rademacher complexity rcm (H) of H is an o(1).
In this cases the empirical risk of the output of A is a consistent estimator of
the risk infimum in the sense of mathematical statistics.

In this paper ERM means that one has to minimise the number of misclas-
sifications on the learning sample (2). Practically, one has to ensure that for
sufficiently small accuracy and confidence – say ε = 0.005 and δ = 10−6 – the
learning sample length suffices to fulfil (3).
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To get an idea of what the Rademacher complexity rcm (H) of a finite H
with respect to samples of length m means, let us mention that rcm (H) ≤√

2 ln |H|/
√

m [23].

3 Using Learning Techniques to Evaluate Metric Sets

In this section we describe how to approximate a comprehensive software quality
assessment scheme based on a set of n metrics by a restricted scheme supported
by the “best” ν-subset (0 < ν < n) of these metrics in terms of learning tech-
niques. To this end, we assign to a family of parametrised comprehensive schemes
a concept class in the sense of PAC learning. For each ν-subset, the corresponding
family of parametrised restricted schemes is, moreover, mirrored by a hypothesis
class. We evaluate the performance of the approximation using the risk infimum
of the best hypothesis class (see (3)).

In the following,wedefine the learning setup:The inputspaceX equals theCarte-
sian product of n intervals [0, c1], [0, c2], . . ., [0, cn], that are the ranges of the n
metrics. Thus each behavioural entity is represented by a vector of length n.

The concept class C, which is equivalent to the parametrised comprehensive
assessment schemes, consists of all concepts g such that for all x ∈ X

g(x) = +1 ⇐⇒ xi > τi for at most k of the indices {1, 2, . . . , n},

and g(x) = −1 otherwise. Therein the parameter (τ1, τ2, . . . , τn) is any element
of X, and k ∈ {0, 1, . . . , n − 1} is a constant. The concept g is equivalent to
the following comprehensive software quality assessment scheme: A behavioural
entity is positively evaluated, if and only if at most k of the n metrics violate
their quality threshold given by (τ1, τ2, . . . , τn).

We restricted ourselves to a “reasonable” concept g0 ∈ C from the point of
view of software quality assessment, rather than to learn the whole concept
class in the sense of PAC learning. Our concept g0 is determined by n threshold
values γ1, γ2, . . . , γn, one for each metric, based on our expertise in software
testing. Then the learning samples were assumed to be drawn according to (1),
with the target concept g being g0 as guaranteed quality of the distribution PU

(see Section 2.2).
For each ν-subset i1 < i2 < . . . < iν of {1, 2, . . . , n}, we define the elements h

of the hypothesis classes H (i1, i2, . . . , iν) determining a restricted scheme by

h(x) = +1 ⇐⇒ xij > τj for at most κ elements j of the set {1, 2, . . . , ν},

where τj ∈ [0, cij ], for j = 0, 1, . . . , ν − 1, are the parameters of the hypothesis,
and 1 ≤ κ ≤ ν is a constant. Thus each ν-subset determines one restricted model
of software assessment.

Clearly, learning a hypothesis of the above kind amounts to computing the ν
hypothesis thresholds τ1, τ2, . . . , τν from the training data. These thresholds need
not be the same as the corresponding ones in the sequence γ1, γ2, . . . , γn. This
is due to the fact that we approximate n metrics by ν ones.
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Without proof we notice that for a moderately large number n of metrics the
pattern classes defined above are of relatively small capacity such that learn-
ing samples of reasonable size suffice to ensure (3) for acceptable accuracy and
confidence.

What is a reasonable course of action in our learning setup to approximate a
larger scheme by a smaller one and to evaluate the performance of the approxi-
mation? The one that follows is rather standard.

1. Represent all available behavioural entities as a vector of length n using the
n metrics.

2. Classify them by the concept g0 ∈ C.
3. Randomly divide these data set into three parts: a training set (50%), a

validation set (25%), and a test set (25%). This is because there are in fact
two goals that we have in mind:
Model selection: estimating the performance of the ν-subsets of our n-set of

metrics to choose the best one.
Model assessment: having chosen a final ν-subset of metrics, estimating the

infimum risk.
4. In general, the training set is used to fit the models. In our case this means

to compute for each ν-subset {i1, i2, . . . , iν} of the index set {1, 2, . . . , n}
a hypothesis h (i1, i2, . . . , iν) ∈ H (i1, i2, . . . , iν) in terms of its hypothesis
thresholds that minimises the empirical risk (see (4)) on the training data.

5. Choose a best hypothesis h
(
i
(0)
1 , i

(0)
2 , . . . , i

(0)
ν

)
on the validation set. This

is done by computing the empirical risks of all hypotheses h (i1, i2, . . . , iν)
found in Step 4 on the validation data, the so-called validation errors.

6. Calculate the empirical risk of h
(
i
(0)
1 , i

(0)
2 , . . . , i

(0)
ν

)
on the test set, the so-

called test error, thus estimating the risk infimum riskH
(
i
(0)
1 , i

(0)
2 , . . . , i

(0)
ν

)
that in turn measures how well n metrics can be approximated by ν ones.

4 Application

To evaluate the practicability of our approach, we performed an experiment. In
this experiment, we applied our approach to investigate whether it is possible to
approximate a set of four metrics by a minimised set of one or two metrics only.

4.1 Metrics

In the following, the four metrics used in the experiment are introduced in more
detail. The metrics are selected to capture different perceptions of complexity
of behaviour within a TTCN-3 test suite with regards to the maintainability
characteristic and its analysability subcharacteristic of the refined quality model
for test specifications [7]. In TTCN-3, test behaviour is specified by test case,
function, and altstep constructs. We start by describing a measure called Number
of Statements.
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Metric 1 (Number Of Statements NOS). The number of statement count
NOS is mostly self explaining. Unlike the common lines of code (LOC) measure,
counting the number of statements ignores information regarding the code itself
such as the code’s formatting or comments while retaining an intuitive measure
of the code length.

Even though NOS delivers a measure for the code length per behavioural
entity, it does not deliver any statement about code complexity. It is missing a
sense of behavioural complexity. McCabe’s cyclomatic complexity [10] attempts
to deliver this, essentially by counting the number of branches of the control flow
graph and thus penalising conditional behaviour.

Metric 2 (Cyclomatic Complexity v(G)). The cyclomatic complexity v(G)
of a control flow graph G can be defined1 as:

v(G) = e − n + 2

In this formula, e denotes the number of edges and n is the number of nodes
in G.

While the cyclomatic complexity v(G) penalises conditional behaviour, it is
missing another factor that comprises code complexity: deeply nested branches
are not penalised any different than flat branches. For example, a conditional
nested within another conditional is penalised the same as two subsequent con-
ditionals even though nested conditionals obviously complicate things. Thus, we
chose to add a simple nesting level metric to our set of metrics.

Metric 3 (Maximum Nesting Level MNL). The maximum nesting level
MNL is obtained by inspecting all conditionals within a test behaviour and
counting their nesting levels. For example, an if-statement within an if-statement
would yield the nesting level 2. The maximum nesting level denotes the highest
nesting level measured per behavioural entity.

Since structured test behaviour may invoke other callable behaviour (e.g. by
calling other functions), the complexity of each code fragment also depends on
the complexity resulting by calls to such other behavioural entities. For develop-
ers, deeply nested call structures can be bothersome as they have to look up and
understand each called behaviour within the code piece in front of them when
working on this code. The Maximum Call Depth provides such a measure.

Metric 4 (Maximum Call Depth MCD). The maximum call depth MCD
is obtained by analysis of the call graph2. For each behaviour A, the correspond-
ing graph of behaviours called by A is calculated recursively to include indirect
1 Several ways of defining v(G) can be found in literature. The above definition as-

sumes that G has a single entry and a single exit point. In the presence of several
exit points, this assumption can be maintained by adding edges from all exit points
to a single exit point.

2 In the call graph, a directed edge from node A to node B indicates that behaviour A
calls behaviour B.
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calls (i.e. the call relation is transitive); in this graph, the length of each path
starting from A is measured and the resulting MCD value is the length of the
longest distinct path. If the path contains a cycle due to a recursive call, the MCD
value is ∞.

We calculate these four metrics for each behavioural entity (i.e. test case,
function, altstep) of a TTCN-3 test suite and use the vector of calculated metric
values to obtain an overall classification of the quality of a test behaviour with
respect to the quality sub-characteristic analysability. To obtain such an over-
all classification, for each behaviour we compare the calculated metric values
against corresponding thresholds. Each element of the vector may be classi-
fied as positive, i.e. does not violate its corresponding threshold value, or neg-
ative, i.e. does violate the corresponding threshold value. The overall classifi-
cation of a behavioural entity is again a positive or negative verdict that de-
pends on how many of the elements of the corresponding vector are classified as
positive (indicating a good quality) or negative (indicating a bad quality)
respectively.

4.2 Experimental Settings

To obtain a reasonable amount of data for applying and assessing our learn-
ing approach, we performed an experiment with several huge test suites that
have been standardised by the European Telecommunications Standards Insti-
tute (ETSI). The first considered test suite is Version 3.2.1 of the test suite for
the Session Initiation Protocol (SIP) [24], the second is a preliminary version of
a test suite for the Internet Protocol Version 6 (IPv6) [25]. Together, both test
suites comprise 2276 behavioural entities and 88560 LOC.

The data used in this experiment was computed by our TRex TTCN-3 tool
[26,27] using the metric thresholds given in Table 1. Based on our TTCN-3 ex-
perience, these basic thresholds were determined along the lines of the GQM
approach mentioned in Sect. 2.1. TRex calculated a vector containing the values
of the four metrics for every behavioural entity. Concerning the overall classifi-
cation, we investigated two different scenarios:

Scenario 1. In the first scenario, every metric in the vector must be classified as
positive to get a positive classification for this behavioural entity, i.e. a concept
g0(x) = +1 ⇐⇒ ∀i : xi ≤ γi, where xi are the metric values computed
by TRex, γi are the corresponding metric thresholds as given in Table 1 and
i ∈ [1, 4]. Using these thresholds, this scenario results in nearly 50% negative
examples, i.e. behavioural entities that have a negative overall classification.

Scenario 2. In the second scenario, only three of the four metrics must be
classified as positive to get an overall positive classification for the behavioural
entity, i.e. a concept g0(x) = +1 ⇐⇒ xi > γi, for at most one of the indices
i ∈ [1, 4]. Using the same thresholds γi as in Scenario 1 (Table 1), this scenario
leads to approximately 13% negative examples.
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Table 1. Metric thresholds used for generating the data

Metric γ

NOS 14
v(G) 4
MNL 3
MCD 10

Preprocessing
We implemented our learning approach and applied it to the data generated
by TRex. For conducting the experiments, we randomly divided the data from
the 2276 behavioural entities into three parts: The first part is used for learning
and contains 50% of the behavioural entities. The second part contains 25% of
the entities, this part is used for validation. Finally, the third part contains the
remaining 25% and is used for testing. We have done such a partitioning for
every experiment to have independent data sets.

The Different Experiments
We examine the best and the two best metrics that yield the closest approxima-
tion of the vector of four for every scenario, i.e. we try to find one metric and
a combination of two metrics that predict the overall classification as good as
possible.

For using just one metric, this means we have to find an occurring threshold.
Therefore, we begin with the smallest possible threshold that divides all values
of one metric in positive and negative examples. In each step we have the hy-
pothesis thresholds τi and the positive (the metric value ≤ τi) and the negative
(the metric value > τi) examples in the hypothesis class H. Then, we compare
this with the overall classification, i.e. the concept class C, and count the num-
ber of misclassifications. Performing the same steps for all possible thresholds
we get the threshold that results in the smallest error. Afterwards, we proceed
with the next metric and do the same. Finally we compare the metric/threshold
combinations and choose the best. This means, we are looking for the smallest
error in all metrics using a specific threshold.

For using two metrics, we try to find a combination of thresholds of two metrics
that leads to the smallest error with respect to the overall classification. We do
exactly the same as above, not searching a specific threshold but a threshold
pair. So, we are searching in each of the possible metric combinations for the
best threshold which leads to the smallest error.

4.3 Experimental Results

By investigating the two scenarios and for each scenario two different approxi-
mations (using either one or two metrics respectively), we obtain four different
results.
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Results for Learning the “Best” Metric in Scenario 1
For Scenario 1 (i.e. all four metrics must be classified as positive to yield a posi-
tive overall classification) and the assumption that the overall classification can
be approximated by only one of the four metrics, the resulting data is provided
in Table 2. If we select the biggest threshold it is clearly evident that all exam-
ples are classified as positive. Then the error is equal to the proportion of the
negative examples. For a better overview we append this to the result table as
allNeg. For any metrics, the resulting error is very big if it is the only metric
used to predict the overall classification. For the best metric the risk infimum
estimated on the testset is 19.61%. As usual we have estimated the risk only for
the best metric. Hence, it is not advisable to replace the four metrics by only one
metric. However, it is remarkable that the threshold chosen by the algorithms
for the MCD metric is exactly the same as used for data generation. The other
located thresholds are at least similar to those used for data generation.

Table 2. Learning the “best” metric in Scenario 1

Metric Empirical risk τ Validation error Test error

MCD 18.93 10 18.09 19.61
NOS 19.19 7 18.97 -
v(G) 29.80 2 34.22 -
MNL 33.57 2 37.41 -
allNeg 44.35 - 45.57 -

Results for Learning the “Best Two” Metrics in Scenario 1
When trying to approximate all four metrics using just two metrics, the results
for Scenario 1 look like provided in Table 3. If the combination of the two metrics
NOS and MCD is chosen, it is possible to reproduce the overall classification
with a quite small risk infimum of 1.94%. The thresholds that have lead to this
small error are exactly the same as chosen to generate the dataset. For all other
combinations of metrics, the error is significantly larger and it is not advisable
to use them instead.

Table 3. Learning the “best two” metrics in Scenario 1

Combination Empirical risk τ1 τ2 Validation error Test error

NOS, MCD 2.11 14 10 1.76 1.94
v(g), MCD 7.98 3 10 7.56 -
MNL, MCD 11.84 3 10 12.30 -
MNL, NOS 19.73 3 7 18.80 -
v(g), NOS 19.82 3 7 18.98 -
v(g), MNL 30.87 2 3 30.93 -
allNeg 44.74 - - 43.94 -
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Results for Learning the “Best” Metric in Scenario 2
In comparison with the first scenario, we here obtained a different ordering in
the metrics, i.e. where MCD was the best metric in Scenario 1, it is now v(g)
(Table 4). The learned threshold for the first metric is exactly the same like
the one chosen to generate the dataset. The estimated risk infimum for the best
metric v(G) is 5.57%. Similar to Scenario 1, a risk infimum of 5.57% is too high
to use just one metric to compute the overall classification.

Table 4. Learning the “Best” Metric in Scenario 2

Metric Empirical risk τ Validation error Test error

v(G) 5.75 4 5.94 5.57
NOS 8.94 22 8.22 -
MNL 9.02 3 9.97 -
MCD 13.01 14 12.94 -
allNeg 13.01 - 12.76 -

Results for Learning the “Best Two” Metrics in Scenario 2
As in the previous experiment, the set of the best metrics as shown in Table 5
is a different one to Scenario 1. The estimated risk infimum for the combination
v(G), NOS that has the smallest validation error is 6.47%. Although the highest
empirical risk in this experiment is 13.12% and therefore smaller than for the
corresponding experiment in Scenario 1, the smallest empirical risk is much
greater than for Scenario 1 and therefore less significant. Also, for NOS, the
learned threshold τ2 = 27 differes very much from the threshold γ = 14 that was
used to generate the data.

Table 5. Learning the “Best Two” Metrics in Scenario 2

Combination Empirical risk τ1 τ2 Validation error Test error

v(G), MNL 5.02 4 4 5.11 -
v(G), NOS 5.46 4 27 4.93 6.47
v(G), MCD 5.55 4 14 5.46 -
MNL, NOS 7.57 3 20 6.51 -
NOS, MCD 8.63 20 14 8.63 -
MNL, MCD 9.42 3 14 8.27 -
allNeg 13.12 - - 12.85 -

5 Summary and Outlook

In the previous sections, we have presented a machine learning based method
for the minimisation of metric sets. In this method, tuples of this metric set are
first used to classify each measured entity of the software under investigation as
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either “good” or “bad”. This classification is determined by threshold values for
each metric in the set. The presented approach then attempts to approximate the
same classification with a smaller set of metrics to reduce the number of necessary
metrics in this set and to identify metrics with overlapping information.

We have tried this approach in two different classification scenarios on a set
of four metrics substantiating the analysability quality characteristic of TTCN-3
test specifications. In the first scenario, the classification has been obtained by
requiring that every metric value in the observed set must be smaller than its
corresponding threshold value to be classified as “good”. Given this setting, we
have tried to approximate the entity classifications by using one single metric
and by using a set of two metrics. According to the results, the risk of misjudging
the classification of a behavioural entity by using just one single metric is quite
high. By using a combination of two metrics, i.e. the NOS and MCD metrics,
the approximated classification is very reasonable.

In the second scenario, only three of four metric values in the set have been
required to be below their corresponding threshold values to be classified as
“good”. Again we have tried to approximate the classifications by using one
single metric and a set of two metrics respectively. In both cases the risk of an
incorrect assessment has been too high. The detailed reasons will be subject of
further investigations.

In the experiments presented, we have applied our approach to metrics ex-
tracted from TTCN-3 test suites. We are currently working on quality assurance
techniques for graphical languages such as the Specification and Description Lan-
guage (SDL) and Unified Modeling Language (UML) which also includes metrics
for models. We expect that our presented approach will also deliver reasonable
results for metric sets designed to work on models. In addition, we want to
evaluate metric sets used on Java implementations.

So far, we have only used a small set of metrics for the evaluation and therefore
time and space complexity of our algorithm was not yet an issue. However, to make
our technique applicable to larger sets of metrics as well, we plan to investigate
the complexity of our method in more detail and optimise it accordingly.

AST abstract syntax tree
ANTLR ‘ANother Tool for Language Recognition’
CMMI Capability Maturity Model Integration
IDE Integrated Development Environment
EPL Eclipse Public License
ETSI European Telecommunications Standards Institute
GQM Goal Question Metric
IPv6 Internet Protocol Version 6
PAC Probably Approximately Correct
SDL Specification and Description Language
SIP Session Initiation Protocol
SPICE Software Process Improvement and Capability dEtermination’
SUT System Under Test
TTCN Tree and Tabular Combined Notation
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TTCN-2 Tree and Tabular Combined Notation
TTCN-3 Testing and Test Control Notation
U2TP UML 2.0 Testing Profile
UML Unified Modeling Language
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Abstract. While protocol conformance testing methodology is a well
formalized field, radio testing methodology still relies on natural lan-
guage specifications. This paper proposes an improvement on the quality
of radio test specifications via the use of formal notation TTCN. This
approach, and the fact that protocol and radio conformance testing share
most of the underlying concepts, enables the use of a generic architecture
for implementations of both types of testers, resulting in a reduction of
the development efforts. This architecture has been validated with the
implementation of radio test cases for the UMTS technology.

1 Introduction

Since its beginning, the effort in the field of conformance testing has been mainly
centered in the area of protocol testing, where the testing methodology has
attained a high level of formalization [1]. However, radio conformance testing
has not evolved as much further. Radio test specifications are still provided only
in natural language making them prone to ambiguous interpretations.

Traditionally, the fields of protocol and radio conformance testing have been
considered as distant worlds, as the engineering groups related to each of them
usually have non-overlapping backgrounds. While the protocol tests are focused
on checking that sequence of messages exchanged between peer entities is per-
formed in the correct order and the proper syntax, the aim of the radio tests is
to certify the compliance of an implementation in aspects such as transmission
and reception compatibility with other equipment. Nevertheless, most of the
concepts are shared in both areas. For example, the set of documents interna-
tionally standardized for testing is nearly the same, as well as the documentation
handled and provided by test laboratories.

In this paper we propose that TTCN is used to model radio test cases which
would enhance the radio test specifications. Nowadays, these specifications are
provided in natural language. Its quality could be improved by formalizing the
test procedure with the use of TTCN, thus avoiding possible ambiguities and
increasing its consistency [2]. With this approach it is possible to use the same
architecture for radio and protocol test systems. One example of this architecture
for protocol test systems, implemented using ITU description languages (SDL,

E. Gaudin, E. Najm, and R. Reed (Eds.): SDL 2007, LNCS 4745, pp. 69–85, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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TTCN, ASN.1), can be found in [3]. A common architecture for both types of
conformance tests can be obtained, which results in a reduction of the time and
cost of the development, as some of the internal modules can be reutilized as
well as the operator interface.

This paper is structured as follows. Section 2 gives an overview of the exist-
ing methodologies for protocol and radio conformance testing. Section 3 briefly
comments the radio conformance test procedures. A proposal for a common test
system architecture for protocol and radio test systems is proposed in Sect. 4.
A detailed description of the main characteristics of this architecture for ra-
dio test systems is provided in Sect. 5. The architecture has been applied to
the conformance testing of UMTS systems. A brief description of its radio test
specification together with an example of application are presented in Sect. 6.

2 Conformance Testing Methodology

Nowadays, the conformance testing methodology is a well understood field.
Firstly compiled in the late eighties by ITU [4], this methodology has been re-
viewed in order to achieve a higher formalization and, at the same time, to tackle
distributed protocols testing. ETSI has been deeply involved in the advances of
conformance testing, being one of the drivers of the TTCN language [5]. A tuto-
rial, published by ETSI, on the standardized techniques for conformance testing
can be found in [6].

Four types of tests can be applied to an implementation:

a) Basic interconnection: to check that main features are implemented and
whether interconnection is possible.

b) Capability: to check observable external static capabilities.
c) Behaviour: check the dynamic conformance of the implementation.
d) Conformance resolution: in-depth checking of conformance.

Different configurations, shown in Fig. 1, are considered for the single layer
testing process. The test designer will choose the most adequate configuration
depending on the level and type of coordination between the UT and LT blocks
and the accessibility of the upper IUT boundary. In ratio tests, the name Equip-
ment Under Test (EUT) is used instead of Implementation Under Test (IUT);
the term System Under Test (SUT) may be used in any context and encompasses
the former two.

Test cases, each with a possible outcome of PASS, FAIL or INCONC, are
grouped in Abstract Test Suites (ATSs). Though there could exist one Abstract
Test Suite for each Abstract Test Method (ATM), an underlying principle is that
only one ATS will be standardized for a given protocol layer.

Compiling a conformance testing standard is a laborious task, which, at the
end, must provide one (or several) documents: a) The Test Suite Structure
and Test Purposes (TSS&TP); b) One or more Abstract Test Suites (ATSs);
c) The Test Management Protocol (TMP) if required. The TSS&TP is provided
in natural language, while the ATSs are written in the TTCN formal notation.
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Fig. 1. Abstract Test Methods

When a manufacturer asks a test laboratory for a conformance certificate,
several other documents are needed: a) Protocol Implementation Conformance
Statement (PICS); b) Protocol Implementation eXtra Information for Testing
(PIXIT); c) System Conformance Test Report (SCTR); d) Protocol Confor-
mance Test Report (PCTR). The first two are needed in the test preparation
stage; the last two are outputs produced by the test laboratory after the confor-
mance assessment process has been performed.

3 Radio Conformance Testing

The development of conformance testing standards for the radio access of com-
munication systems follows a path quite similar to the one employed for proto-
cols. However, this process lacks the level of formalization achieved with protocols.
Specifically, no Abstract Test Suite in formal language is produced, thus stopping
the standardization process at the TSS&TP document.
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A key difference between radio and protocol conformance tests is that
the former require specific equipment capable of carrying out the needed mea-
sures in the air interface. Examples of such instrumentation are wave generators,
signal modulators, oscilloscopes, spectrum analyzers, etc. Instruments include in-
terfaces to remotely control them, such as RS232, VXI or GPIB. The first one
is an all purpose interface, while the latter has been specifically designed for
instrumentation control, having a higher flexibility and performance. GPIB [7]
is characterized by a parallel bus (8 bits) with a bitrate of 8 MB/s1, together
with a basic set of high level functions for the equipment management. GPIB
can simultaneously control up to 15 devices at high data rates.

At present, ratio test systems have an architecture as shown in Fig. 2 [8]. The
Test Case Library block can be seen as scripts that carry out the required actions
in order to remotely control the measurement instrumentation and report the out-
come of test campaigns. Virtual instrumentation tools, such as LabWindows/CVI
or LabView, are widely used to develop such test systems, as they offer an easy
and efficient way to code these scripts. Nevertheless, the lack of formality in the
test specification may result in different realizations of the same test by two or
more test system manufacturers. Note that the communication between the Test
System and the EUT2 can be accomplished as either a conducted or a radiated
link. The former is usually implemented using a switching unit.

4 Test System Architecture

Paper [3] describes a methodology that, taking into account the protocol con-
formance testing methodology, can be used for the implementation of protocol
test systems using ITU description languages. The architecture proposed in this
paper is shown in Fig. 3-a. Its main components are:

a) Graphical User Interface: controls the test campaign execution and reports
and logs its outcome. It’s written in Java to allow for portability to different
operating systems.

b) Abstract Test Suite: divided in lower tester and upper tester parts, contains
the compiled Test Cases.

c) Lower Subsystem: allows communication between the test system and the
IUT. It comprises those layers above the physical layer that the test system
must implement as indicated by the corresponding Abstract Test Method.

Looking at the architecture in more detail we can see that some of its parts can
be either reused or automatically generated. The GUI can be designed so that
it can serve in any protocol test system. Using TTCN C-code generators the
Executable Test Suite (ETS) can be automatically generated from the standard
TTCN modules. Supporting modules for the Executable Test Suite such as Test

1 Originally 1 MB/s, increased to 8 MB/s in 2003.
2 In ratio tests, the name Equipment Under Test (EUT) is used instead of Implemen-

tation Under Test (IUT).
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Control, Platform Adapter and I/O can be reused in different test systems;
this also happens with the Platform Adapter and I/O modules used by the
Lower Subsystem. The Codec modules can be partially reused; the Codec used
to communicate the ETS with the Lower Subsystem can be the same in all test
systems. Only the specific codec used for peer messages must be generated for
each technology under test.

This architecture could also be used in conformance radio testers (see Fig. 3-b)
if such test cases were provided in the formal TTCN notation. In this way, code
reusing and automatic generation of several blocks would also be achieved in radio
test systems. Such an extension would require some changes in several of the blocks
of the architecture:

a) Graphical User Interface (GUI): Radio Test Cases usually define a mask or a
threshold that the IUT must comply with. Graphically showing the outcome
is a useful tool for radio engineers, something not needed in protocol testing.

b) Abstract Test Suite: Its characteristics will be described in detail in Sect. 5.1.
c) Platform Adapter, Test Control, Logging and I/O: No changes would be

needed.
d) Codec: As explained above, only the codec used by messages of the technol-

ogy under test (e.g. UMTS, Bluetooth, WiMax) would be needed.
e) Lower Subsystem: Instead of implementing the behaviour of the lower layers

of the protocol stack, it handles the communication with the instruments,
hiding specific characteristics implemented by manufacturers. Due to this,
it’s more appropriate implementing it in C than in SDL.

f) Equipment: Performs actual measurements as requested by test cases.

An advantage of this architecture is that the components of the test system
can be distributed across different platforms without having to modify their
implementation. For example, we could think of implementing the lower subsys-
tem in a dedicated card more closely integrated with the equipment, while the
ETS and the GUI could run on a specific processor.

The designer could be tempted to merge the Lower Subsystem functionality
(see Sect. 5.2 for a full description) into the Executable Test Suite. This would
remove the overhead introduced by the Codec modules. However, we must con-
sider that the radio tests are “slow” tests, at least, at the test procedure level.
If we accept the overhead by introducing these codecs, it allows us to use the
same architecture as for protocol test systems, modularize the design and (as
indicated above) distribute the components.

5 Radio Test System Description

This section describes in detail those modules specific to radio test systems. Both
the Abstract Test Suite and the Lower Subsystem own particular characteristics
that distinguish them from those included in protocol test systems.
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5.1 Abstract Test Suite

The main feature of the proposed architecture for radio test systems is the use of
TTCN. This language would allow the standardization bodies to provide radio
test suites in formal notation, thus leaving out any ambiguity that could arise
in the natural language test specifications. At the same time, the validation
effort would be reduced. This section describes the decisions taken and the main
characteristics of this modelling.

In Sect. 2 the four ATMs defined by the conformance testing methodology
have been presented. The main difference among these configurations is how
the EUT is controlled during the test execution. There are two options to carry
out this control: either automatically configuring the EUT for a test case, or
manually. The first option completely automates the test procedure, but radio
test specifications do not include a Test Controlling Protocol. Because of this,
the second option has been chosen. Thus, the remote ATM (see Fig. 1-d) seems
to be the most adequate configuration.

As in protocol tests, radio tests cases can be divided in three different sections
that deal with the following duties:

a) Preamble: Sets the instrumentation and puts the EUT into the initial con-
ditions demanded by the test case so that the test purpose can be verified.

b) Test body: Carries out the required actions on the EUT and the instrumen-
tation in order to check the test purpose

c) Postamble: Although this stage does not explicitly appear in radio test spec-
ifications, it is required so that both EUT and instrumentation are put back
into idle state.

The idle state must be defined so that every preamble starts under the same
conditions as there is no fixed order for executing test cases. GPIB instrumen-
tation allows two different states: local and remote. The local state, which does
not allow the remote controlling, has been considered as idle.

The communication between the Abstract Test Suite and the instrumenta-
tion is made via messages. Each message will request one or several actions,
depending on the specific instrumentation used, to be carried out by the Lower
Subsystem. The communication must be designed taking into account GPIB bus
behaviour and features. We require a confirmation for all messages sent to the
instrumentation; it would be possible to only check the correct communication
with the instruments at previously defined checkpoints, but we must consider
the possibility of an error in the GPIB bus. As the instrumentation is provided
by external devices, the probability of errors increases. The logical flow of the
test case using the proposed set of messages is depicted in Fig. 4.

For every send event, a timeout is raised if its confirmation message, which can
carry a positive or negative result, is not received in due time. If the confirmation
is not received, it will mean that a communication error has occurred. The test
execution can be stopped just after an error occurs, avoiding unnecessary waits
for an INCONC verdict of the test case. This behaviour can be implemented in
a parameterizable step in TTCN.
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Fig. 4. Logical flow of test cases using the proposed set of messages

Although the type and number of needed messages may depend on the imple-
mentation, we have defined a set of messages that covers all required function-
ality. In the preamble stage, messages INIT CONFIG and INIT BUS have been
defined. The first one tells the Lower Subsystem to read in the equipment config-
uration; afterwards, the instrumentation is initialized with the second message,
setting them into GPIB remote state. At the same time, message CLOSE BUS

(used in postambles) will put the instrumentation into idle state.
Three messages have been used for configuring and retrieving data from the

instrumentation.

– Message SET PARAMETER configures and activates measurements.
– Message GET PARAMETER obtains the instantaneous value of the active

measurement. The request messages should include an instrument identifier
and a command, which indicates the action to be performed by the instru-
mentation. The response counterparts should include an error code and, for
the GET PARAMETER message, the measured value.
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– The third message is related to one of the functionalities typically needed in
radio tests, the capture of a whole trace from an instrument. The points of
the trace can be obtained either in one shot or by issuing a repetitive series
of requests. This behaviour should be hidden from the ATS. Consequently,
message GET TRACE has been defined. The Lower Subsystem, which knows
the interface with the instruments, will be responsible for implementing the
appropriate actions to read in an entire trace.

Finally, one more message has been used for requesting actions from the operator.
This message has been called ACTION REQ and it can carry a text message. It
is handled by the Test Control module.

Radio tests usually require an additional processing after having captured
a trace by the instrumentation. This processing may require complex mathe-
matical operations. Given that most of these (processing, for example, maxi-
mum/minimum search, filtering, bandwidth calculation, demodulation, bit syn-
chronization, power integration) are common to radio test suites for different
communication systems, we can think of them as a generic signal processing
library that can be reused in different test systems, such as GSM, Bluetooth or
UMTS. The functions in this library can be called from the TTCN code and
linked at compilation time.

5.2 Lower Subsystem

The Lower Subsystem is the module responsible for the communication between
the Abstract Test Suite and the Equipment Under Test. On one hand, it hides
the physical communication characteristics; on the other hand, it takes into
account possible interface differences as instrumentation can be built by different
manufacturers. The implemented Lower Subsystem offers a generic API that can
be used by any radio test case that is built using GPIB instrumentation.

One first issue is the type of interface offered by the instrumentation for its re-
mote control. GPIB [7] has been chosen because of its flexibility and performance.
The second issue to tackle is the set of remote commands that can be used. In
Sect. 5.1 we have shown the messages used in the TTCN test modelling. The Lower
Subsystem must map these messages into commands suitable for the specific in-
strumentation included in the test system. Several aspects must be considered:

a) The test system must be able to integrate instrumentation from different
manufacturers.

b) Manufacturers usually only implement a subset of the GPIB standard.
c) Proprietary commands are often included to control capabilities that are

specific for the instrument.
d) The same command may have different meanings for each device.

Configuration files can be used to solve these problems. Two types of configu-
ration files have been used. The main configuration file (see Fig. 5) contains, for
each instrument, an identifier, specific GPIB information (GPIB card address,
GPIB address of the instrument and GPIB signalling mode) and a reference to
an equipment configuration file.
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# Configuration file for Test System
#id_equipo GPIB_board dir_GPIB EOT_mode file

Spec_An 0 20 2 specan.egp
Wave_Gen 0 29 2 wavgen.egp

Fig. 5. Main configuration file

# DEVICE: Spectrum Analyzer (specan.egp)

# Generic command Specific device command

# Non-query commands

Reset *RST
PeakPower CALC1:MARK1:MAX
Span SENS1:FREQ:SPAN
Center SENS1:FREQ:CENT

Trigger TRIG1:SEQ:SOUR
_FreeRun IMM
_Line LINE
_RFPower RFP

# Query commands

PeakPower? CALC1:MARK1:Y?
RefLevel? DISP:WIND1:TRAC1:Y:SCAL:RLEV?
SweepTime? SENS1:SWE:TIME?

Detector? SENS1:DET1:FUNC?
_Average AVER
_Sample SAMP
_Rms RMS

ErrMsg? SYST:ERR?

Fig. 6. Configuration file for spectrum analyzer FSIQ26 (Rohde&Schwartz)

The equipment configuration files (see Fig. 6) will provide the mapping between
the command parameter of the primitives and the particular GPIB command for
that instrument. This file contains, in one column, the command parameter of
the primitives and, in a second column, its translation to the instrument’s GPIB
command. When the command requires a response from the instrument then char-
acter ‘?’ is added at the end. Such commands are used to retrieve data from the
instruments. The commands may carry options that must be also mapped. To dis-
tinguish them from the commands, they start with character ‘ ’ and appear right
after the command itself.

With this mechanism new instruments can replace the existing ones by just
defining their corresponding configuration files. Using these new files instead of
the old ones will create a new test system with the same functionality as before,
but with instrumentation from different manufacturers.
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The Lower Subsystem has been writ-
ten in C. Each message used in the
Abstract Test Suite has, in the Lower
Subsystem, a routine that implements
its expected behaviour. These routines
map the commands, hiding the actual
implementation of the GPIB commands
and can also perform low level error con-
trol. Table 1 lists these routines, their
parameters and a brief description for
each of them. The Instrument data type
(see Figure 7) stores the configuration
data for each instrumentation device. In
case of error, all these routines return
an error code and a description in pa-
rameter error. The Commands field of the
structure holds the list of available com-
mands for this instrument and the pa-
rameters that each command can carry.

typedef struct

{

char id_instr[L_ID_INSTR];

int gpib_board;

short dir_gpib;

int eot_mode;

char arch_instr[L_ARCH];

Commands *coms;

void *sig;

} Instrument;

Fig. 7 Instrument data type

When a message is received, the Lower Subsystem checks its type and then
codifies the corresponding equipment commands, with the appropriate param-
eters as indicated in the message, looking at the translation table generated
from the configuration files. The commands are executed sequentially and each
result read from the bus and stored3. When all the commands associated with
the message have been executed, a response is sent to the Executable Test
Suite.

6 UMTS Radio Test System

UMTS is one of the mobile communication systems that are part of the 3G
family [9]. This technology provides multiple, simultaneous and flexible connec-
tions with bitrates from 64 kbit/s up to 2 Mbit/s, worldwide roaming, security
and negotiated QoS according to the user needs. It is expected that, with such
speeds, services with high bandwidth demand such as multimedia services can
be provided in a mobile environment.

The radio access technology is Direct Sequence CMDA (DS-CDMA), com-
monly referred to as WCDMA because bands are 5 MHz wide. The main char-
acteristics of this technology are its robustness against interferences, its spectral
efficiency, frequency reuse and flexible data rates. There are two working modes
in WCDMA: Frequency Division Duplex (FDD), where one carrier is used for
uplink and another carrier (separated 5 MHz) is used for downlink; and Time
Division Duplex (TDD), where some slots in the carrier are used for uplink while
other slots are used for downlink.

3 Execution of commands is aborted if any of them is not successful. In this case, the
error is read and reported back.
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Table 1. Routines implemented in the Lower Subsystem

Function declaration Description

int InitConfig (Instrument *instr, char
*err)

Reads the configuration files.
Must be called at the beginning
of the test case.

int InitBus (Instrument *instr, char
*err);

Sets the equipment into remote
mode.

int SetParameter (Instrument *instr, char
*id, char *com gen, char *par gen, char
*err);

Executes the GPIB commands
that do not require a response
by the equipment.

int GetParameter (Instrument *instr, char
*id, char *com gen, char *par gen, char
*valor dev str, int l valor dev str, char
*err);

Executes the GPIB commands
that require a response by the
equipment.

int GetTrace (Instrument *instr,char *id,
char *tx, char *ty, char *err)

Acquires the measurement
trace.

int CloseBus (Instrument *instr, char
*err);

Sets back the equipment into lo-
cal mode; the front panel con-
trols can be used again.

The radio test cases [10] are classified in four groups: transmitter charac-
teristics (17), receiver characteristics (7), performance requirements (14) and
requirements for support of Radio Resource Management (38). The list of trans-
mitter test cases is shown in Table 2, which indicates the type of measurement
that must be performed for each test case.

6.1 Example of Test Case Implementation

All test cases in the transmitter group have been implemented. As an example,
we will describe the implementation of test case 5.9 (see Table 2), called Spec-
trum Emission Mask for the FDD variant. The purpose of this test case is to
verify that the power of the User Equipment (UE) emission does not exceed the
prescribed limits specified in the standard. The UE output power is measured
at different offsets and compared with a reference emission mask.

The initial test conditions require that the UE is entered into loopback mode
after a call has been setup (as described in [11], [12]). The test procedure must
perform the following steps:

a) Set and send continuously Up power control commands to the UE until the
UE output power is at maximum level.

b) Measure the power of the transmitted signal with a measurement filter as
described in the standard. The centre frequency of the filter is stepped in
contiguous steps and the measured power recorded for each step. The band-
width of the filter is 30 kHz or 50 MHz, depending on the offset from the
carrier centre frequency.

c) Calculate the ratio of the measured power compared to the reference power
mask.
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Table 2. List of transmitter test cases for UMTS

TS
34.121

Test Name MeasurementTS
34.121

Test Name Measurement

5.2 Maximum Output
Power

Power level 5.6 Change of TFC Power level

5.3 Frequency Error Frequency 5.7 Power Setting in
UL Compressed
Mode

Power level

5.4 Output Power Dy-
namics in the UL

<group> 5.8 Occupied Band-
width (OBW)

Spectrum

5.4.1 Open Loop Power
Control in the UL

Power level 5.9 Spectrum Emis-
sion Mask

Spectrum

5.4.2 Inner Loop Power
Control in the UL

Power level 5.10 Adjacent Channel
Leakage Power Ra-
tio (ACLR)

Spectrum

5.4.3 Minimum Output
Power

Power level 5.11 Spurious Emis-
sions

Spectrum

5.4.4 Out-of-Sync Han-
dling of Output
Power

Power level 5.12 Transmit Inter-
modulation

Spectrum

5.5 Transmit ON/OFF
Power

<group> 5.13 Transmit Modula-
tion

<group>

5.5.1 Transmit OFF
Power

Power level 5.13.1 Error Vector Mag-
nitude

EVM

5.5.2 Transmit ON/OFF
Time Mask

Power level 5.13.2 Peak Code Do-
main Error

PCDE

Test Case Name TC_TRM08_SpecEmissMask

Group TRM/TC_TRM08/

Purpose Verificar que la mascara espectral de emisión se cumple para distintas

variaciones de la frecuencia portadora, tanto para altas como bajas frecuencias

Configuration

Default Check_T_global_trm08

Comments

Selection Ref TCS_TRM08

Description Verificación de la mascara de emisión espectral para bajas y altas frecuencias.

Nr Label Behaviour Description

1 START T_global_trm08

2 +Inicializar_sistema

3 +Inic_an_esp_trm08_ftx_low

4 +Calc_SpecEmissMask_low

5 +EUT_ftx_high

6 +Inic_an_esp_trm08_ftx_high

7 +Calc_SpecEmissMask_high

8 +Check_res_trm08

Fig. 8. Code for test case Spectral Emission Mask
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Test Step Name Calc_SpecEmissMask_low

Group Calc_Steps/TC_TRM08/

Objective

Default Check_T_global_trm08

Comments

Nr Label Behaviour Description Constraints Ref

21 (TCV_frec_stop :=
TSO_RESTAR(TSC_fx_low,”2500000”))

22 GPIB!SET_PARAMETER_REQ
Set_parameter_req(TSC_id,
TSC_com_stop,
TCV_frec_stop)

23 +Set_parameter_err_rsp

24 START T_espera_1_s

25 ?TIMEOUT T_espera_1_s

26 GPIB!GET_PARAMETER_REQ
Get_parameter_req(TSC_id,
TSC_com_get_traza,
TSC_par_traza)

27 +Get_parameter_err_rsp

28 (TCV_arizq := TCV_par)

Fig. 9. Code for test case Spectral Emission Mask

Fig. 10. Graphical result of the spectral emission mask test case

To carry out this test, we only need a spectrum analyzer; in particular we have
used the FSIQ26 spectrum analyzer. The test cases were implemented in TTCN-
2 because the common blocks (see Fig. 3) with protocol test systems were already
built for this language version. However, the same architecture can be used with
TTCN-3. In this case the common blocks around the Executable Test Suite
would have to be adapted to the particular characteristics (structure, interfaces,
data types, . . . ) of the C code generated by the TTCN compiler.

The test case has been implemented as follows (see Fig. 8 and Fig. 9):

1. The test system is initialized: the equipment configuration files are read
(INIT CONFIG) and the equipment is set into remote mode (INIT BUS).

2. The spectrum analyzer is configured with the appropriate measurement filter
parameters (bandwidth 30 kHz) via SET PARAMETER messages.

3. The peak power is measured. The value is received in a GET PARAMETER

message.
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INIT_CONFIG

INIT_BUS

SET_PARAMETER { IA5String "RSFSIQ26_1" , IA5String "Reset" ,
IA5String "" }

SET_PARAMETER { IA5String "RSFSIQ26_1" , IA5String "Center" ,
IA5String "1922600000" }

SET_PARAMETER { IA5String "RSFSIQ26_1" , IA5String "Span" ,
IA5String "10000000" }

SET_PARAMETER { IA5String "RSFSIQ26_1" , IA5String "RBW" ,
IA5String "30000" }

SET_PARAMETER { IA5String "RSFSIQ26_1" , IA5String "VBW" ,
IA5String "30000" }

SET_PARAMETER { IA5String "RSFSIQ26_1" , IA5String "Detector" ,
IA5String "Positive" }

SET_PARAMETER { IA5String "RSFSIQ26_1" , IA5String "Mode" ,
IA5String "Clear/Write" }

SET_PARAMETER { IA5String "RSFSIQ26_1" , IA5String "SweepTime" ,
IA5String "0.2" }

SET_PARAMETER { IA5String "RSFSIQ26_1" , IA5String "Trigger" ,
IA5String "FreeRun" }

SET_PARAMETER { IA5String "RSFSIQ26_1" , IA5String "RefLevel" ,
IA5String "0.000000e+00" }

SET_PARAMETER { IA5String "RSFSIQ26_1" , IA5String "Span" ,
IA5String "2500000" }

SET_PARAMETER { IA5String "RSFSIQ26_1" , IA5String "MarkerX" ,
IA5String "1922600000" }

GET_PARAMETER { IA5String "RSFSIQ26_1" , IA5String "PeakPower?" ,
IA5String "" }

SET_PARAMETER { IA5String "RSFSIQ26_1" , IA5String "RefLevel" ,
IA5String "-1.719118e+01" }

SET_PARAMETER { IA5String "RSFSIQ26_1" , IA5String "Start" ,
IA5String "1.925100e+09" }

SET_PARAMETER { IA5String "RSFSIQ26_1" , IA5String "RBW" ,
IA5String "30000" }

GET_TRACE { IA5String "RSFSIQ26_1" , IA5String "Trace?" ,
IA5String "" }

GET_TRACE_RSP { IA5String "-8.8148574E+001,É,-8.6903923E+001" , 1 ,
IA5String "No error" }

GET_PARAMETER_RSP { IA5String "-27.1911773681641" , 1 ,
IA5String "No error" }

Test Case Lower Subsystem
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Fig. 11. Sequence of messages for test case Spectral Emission Mask until the first trace
is obtained
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4. Measurements for frequencies with offset up to +2.5 MHz from the carrier
frequency are taken (steps of 5 kHz) using the GET TRACE message.

5. Measurements for frequencies with offset down to -2.5 MHz from the carrier
frequency are taken (steps of 5 kHz) as before.

6. The spectrum analyzer is configured for a bandwidth resolution of 50 kHz.
7. Measurements for frequencies with offset from -12.5 MHz up to +12.5 MHz

from the carrier frequency are taken (steps of 25 kHz).
8. Measurements are compared with the reference emission mask and a verdict

is generated.

When the test finishes a graphical report of the measured results is provided on
the operator screen such as shown in Fig. 10. The dotted line represents the refer-
ence power levels. Figure 11 shows the sequence of messages exchanged between
the test case and the Lower Subsystem from the beginning of the execution until
the fourth step, where the first trace is read.

7 Conclusion

A methodology for radio conformance testing has been presented, which increases
the quality of the radio test specifications as these are currently written in natural
language. Using TTCN represents a step forward in the formalization of these
test specifications. The validation process for test systems is simplified as some
of their parts would have already been agreed by the qualification bodies.

The proposed architecture is derived as an extension from one that has pro-
vided good results in protocol conformance test systems. Several modules can
be shared between both types of test systems, thus reducing the effort and cost
required for the development.

This architecture enables the integration of instrumentation from different
manufacturers as well as its straightforward substitution by other instrumenta-
tion with equivalent capabilities. This is achieved by the use of GPIB bus for
the communication with the instrumentation and the definition of configuration
files that particularize the interface implemented by each instrument.

As an example of use, the implementation of one transmitter test case for
the UMTS system has been shown. Additionally, this architecture has also been
used to implement the set of radio test cases for Bluetooth system.
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Abstract. This paper describes a toolset for functional testing UML2.0
models by TTCN-3 test suites and its application within Motorola. The
toolset incorporates support for part of the UML2.0 testing profile from
which TTCN-3 can be generated. The toolset has been developed within
Motorola for models developed using Telelogic Tau G2 and test suites
using Telelogic Tester. The models are subsequently used for application
code generation.

The basic integration of the Telelogic Tau and Tester, called cosim, has
novel features, such as the ability to service operations declared as exter-
nal to the model within TTCN-3, and to control model timer operations
within TTCN-3. Translating UML2.0 data structures, such as classes, sig-
nal definitions, port definitions, and constants into TTCN-3 is done by
a tool called UMB. The paper deals with complexities in mapping Tau
UML2.0 types and structuring into TTCN-3.

To provide more rigorous test specification a tool supporting part
of the UML2.0 Testing Profile has been developed which enables con-
sistency of test specifications to be checked automatically and also the
generation of executable TTCN-3 test suites for cosim.

The toolset is being used by several different product groups within
Motorola, and the paper reports some experience and findings, including
areas where TTCN-3 can be extended.

1 Introduction

Motorola has many projects using Telelogic’s Tau G2 [10] for developing detailed
UML2.0 [4] models that are subsequently used to generate application code using
either Telelogic’s [7], or Motorola’s [3] code generators. In the past Motorola’s
strategy for functional testing SDL [6] models developed in Tau SDL Suite [9],
was to use Telelogic’s TTCN Suite [11] tool supporting TTCN-2 [13] that was
integrated with the SDL Suite simulator in what Telelogic term cosimulation [8].
However, Telelogic does not currently provide similar functionality between their
Tau G2 and Tester [12] tools for testing UML2.0 models with TTCN-3 [14] test
scripts and so Motorola has developed its own integration, known as cosim which
is reported in this paper along with supporting tools and some experience from
its use.

E. Gaudin, E. Najm, and R. Reed (Eds.): SDL 2007, LNCS 4745, pp. 86–100, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In the remainder of this paper when we use UML and TTCN we refer to
UML2.0, and TTCN-3, respectively. We also use Tau UML to reflect Telelogic’s
proprietary implementation of data beyond that defined in UML2.0.

In Sect. 2, we discuss some of the particular issues involved in testing func-
tionality of models, and how we have devised solutions to these in cosim, such
as external operations and timer handling. The cosim tool provides the basic in-
tegration between Tau Model Verifier and Tau Tester and is covered in Sect. 3.
In Sect. 4, the UMB tool is reported, which translates static data declarations
from a UML project into TTCN source code, such as signal and passive classes,
as well as ports and constants. The section highlights some of the difficulties of
mapping the Tau UML class/type and package system to TTCN.

Motorola has worked on support for the UML Testing Profile [1,5] using TTCN
as an action language. In Sect. 5 we introduce the Motorola U2TP Tau addin
that generates TTCN code for test architecture and the like from a UML Testing
Profile representation and also generates TTCN test functions from behaviour
represented in UML Sequence Diagrams. When used in conjunction with UMB,
an entire test suite can be generated.

Section 6 comments on the TTCN language for UML model testing, and
Sect. 7 gives some insight to the use of the test environment. Section 8 has
concluding remarks.

2 UML Model Testing

The main benefit of developing detailed design models in a high level language
such as SDL or UML is the ability to dynamically test the model prior to gen-
erating application code to discover functional defects earlier in the lifecycle [3].
Dynamically executing the model in isolation can be done interactively, much
like using a traditional debugger, where a user sets breakpoints and can examine
and alter values; however for repeatability and automation a test environment
that uses test scripts requiring no human interaction is preferred. For SDL and
UML models based on concurrent state machines the test language must be able
to send and receive signals to/from the model and to handle concurrency/non-
determinism, for which TTCN is very well suited.

Although model testing can be driven by a formal test script, one can still
retain the advantages of model simulation, such as having both textual and
graphical traces displayed in real-time, the ability to set break-points and exam-
ine values. Indeed, cosim uses these capabilities from Tau’s UML Model Verifier
and Tau Tester in generating execution logs and Sequence Diagrams.

Models used for application code generation present special challenges for
testing; here we discuss two of these problems. In the first place there is the
interface between the model and external interfaces, and secondly there is con-
trolling model timers during testing. cosim has solutions to these two problems,
which are covered in the following two subsections.

In the first case, cosim takes advantage of the TTCN language features for
procedure based communication, and in the second case, we use signal based
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send/receive statements in TTCN, although there is a case to be made for having
new statements specifically for external timers to be added to the language; this
is further discussed in Sect. 6.

2.1 External Operations

Models developed for code generation inevitably have to interface to external
entities, such as platform services (e.g database access, check-pointing, and er-
ror logging), and protocol stacks, etc. Whilst certain of these services, such as
inter-process communication, may be handled by code used to integrate model
generated code with its environment, leaving the developer to model communica-
tion using UML signals, other services have to be represented as external entities
within the model – typically as class/type definitions and operation signatures.

To compile application code generated from a model, the user will need to sup-
ply code or libraries that implement such external entities. However, for model
testing through model simulation it is usually impossible to include this external
code – for example, the model development platform is different from the target
platform, or the model generated code forms just one component of a complete
executable so cannot be executed in isolation.

For model simulation the user usually has two options: either provide stub
code for the external operations, or have the simulation tool (Tau Model Verifier
here) dynamically prompt the user for return values during simulation.

The problem with stub code is that the stubs have to be written in the first
place, and secondly different stubs may have to be written for different tests.
For example, one test may be for normal model behaviour when an external
operation returns successfully, and another test the error path behaviour when
the same operation called with the same arguments returns an error code. In
any event, stubs need to be configured along with the tests, not with the model.

The issue with prompting is that it requires user interaction, and the test
values need to be documented and configured with the tests.

If optioned cosim automatically generates and compiles stub code during the
build process for each Tau UML operation having the ‘External’ stereotype set.
Then whenever an operation is invoked during test execution the stub encodes
and transports all its ‘in’ and ‘inout’ arguments to Tau Tester along with the
operation name. The cosim code on the Tau Tester side places such external calls
into a cosim reserved port, which can then be picked up in a test script with
the TTCN-3 getcall statement. The desired response can be made using the
TTCN-3 reply statement, which causes cosim to encode and transport ‘out’,
‘inout’ and ‘return’ values back to the UML stub, again with the operation name;
the stub in turn returns these values to the model simulation. The stub code
blocks whilst the Tester side services the call. cosim uses a dedicated socket to
transport procedure calls and responses between Tester and the Model Verifier.

Suppose we have the following external definition in UML of a Boolean oper-
ation called validate, that is intended to determine if a password is valid for a
given user Id:

public <<External="true">> Boolean validate(Pass t, UserID t);
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Now suppose that the following call is made to the operation during the model’s
execution:

validated = validate(password, userId);

The call will cause cosim to enqueue the call onto a TTCN port called proc port
that cosim uses for this purpose. The call encodes the operation name along with
the values of password, and userId. The model’s execution is now suspended1

until a response is delivered by cosim from the TTCN execution. In TTCN, the
call is detected by the getcall statement such as by the following statement
(which here does not care what the parameter values are):

proc port.getcall(validate: {?, ?} );

Once the call has been picked up in TTCN by a getcall statement, the test
script can make any calculations it needs to before sending a response back via
a reply statement, such as:

proc port.reply(validate: {-, -} value true);

In this case the return value has been scripted to be true, and the ‘-’ for the
parameter values indicate that no value is specified, here because they are ‘in’
parameters.

The cosim code will encode and send back to the UML side any ‘out’ or ‘inout’
parameter values plus a return value if used for the operation, as in our example.
These values are then returned to the blocked UML operation call which then
unblocks allowing the Tau Model Verifier to proceed with the parameter/return
values as sent by TTCN reply statement being returned to the run-time system.

‘External’ tagged artifacts in Tau UML may originate either through import-
ing, say, C/C++ header files, or by the user applying the ‘External’ stereotype
manually. The automatic generation of stubs works in either case, except that
for imported C/C++ types/classes the user will have to supply the appropriate
source code definition as per pure simulation builds.

2.2 Timers

Verifying models that contain timers via simulation presents some difficulties.
The default mode of the Tau Model Verifier is to use ‘simulated’ time, however
one can also chose real-time behaviour. In simulated time no timer will expire
so long as there are internal or external signals waiting to be consumed. If there
are none then the simulation will expire the timer that would fire first in real
time – that is, the simulation will jump ahead in time to the point where the
next timer will expire.

Using simulated time it is not possible to force a timer to expire in the Model
Verifier whilst there are signals waiting to be consumed other than through
1 Only the operation’s body blocks, although this is moot as Tau’s Model Verifier is

single threaded.
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manual intervention in the GUI; thus it is not possible to test automatically all
possible scenarios. For real-time simulation there are different problems: some
timers may be literally days long, so testing behaviour when they expire would
be unrealistically slow, whilst on the other hand running cosim through the Tau
GUIs on a real-time simulation means that a user’s actions may effect behaviour.
For example, if a user cannot initiate a test quick enough after starting the model
simulation, a UML watchdog timer may expire before the TTCN has sent an
appropriate signal (for simulated time, cosim takes care of this situation).

For theses reasons, cosim has an option in which model timers may be con-
trolled from the test script. Here whenever a timer is set in the model, cosim
sends a signal to Tester on a reserved port that can be picked up in a test script
by a regular receive statement. The signal has as parameters the name of the
timer, its duration, and a unique number to distinguish multiple timers of the
same name. Only if a corresponding expire timer signal is sent back from TTCN
will the timer expire in the UML model.

3 The Cosim Integration

The heart of the test suite is a tool called cosim that integrates the Tau G2 Model
Verifier with Tau Tester. It consists chiefly of one set of code that integrates
with the Tau G2 generated code API and one set that integrates with the Tester
API (Telelogic’s implementation of the TTCN TRI and TCI interfaces [15,16]).
The user generates executables for the UML model and TTCN test suite using
Telelogic’s own code generators through the normal tools’ menu systems using
build scripts provided by cosim.

Since cosim uses Telelogic’s own C code generators, all UML and TTCN
language features that are supported by Telelogic are de facto supported by
cosim, there are no additional constraints. However there are UML elements
that are not supported by Telelogic C code generation, such as user defined
UML templates, an hence these cannot be accommodated by cosim either.

In the case of Tau UML, the user points the build artifact to the cosim kernel,
and for Tester the user uses a cosim make configuration file. cosim can be run
either via the tools’ GUIs (the Model Verifier on UML side), or directly from
the command line/shell so that batch execution can be scripted. In either case,
textual and sequence diagrams of both the model and test suite executions can
be recorded.

Communication between the two tools is via three sockets using a dedicated
encoding/decoding scheme: two sockets are for asynchronous messages exchange
(one in each direction between the two tools), and one for servicing synchronous
external operation calls made by UML model.

Tau tester provides several modes of execution of TTCN test suites, which
are all supported by cosim. For example individual tests can be executed inter-
actively through its test management GUI, or a test plan file can be specified
that executes a number of tests in sequence.
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Signals that are sent out of a UML port are directed by cosim to a port
of the same name in TTCN and vice versa. That is the system port names of
TTCN tests must match the names of the ports of the active class being tested
in UML. Furthermore the type names in TTCN must match the corresponding
signal name in UML. Notice that the direction of signals on a UML port will
be the opposite of the same signals in the corresponding TTCN port. Thus if
signal appears in the required interface of a port of the UML active class under
test, then it must be declared in the ‘in’ direction of the corresponding TTCN
port type. The converse is true for signals appearing on a realized interface. The
UMB tool will construct appropriate TTCN port type definitions from a UML
model as described in Sect. 4.

UML external operations that are to be serviced by TTCN do not require
any port declarations in a UML model, but the corresponding signatures must
be listed in a TTCN port type as ‘inout’s that is instantiated with the name
proc port, as cosim injects procedure calls to this port.

Similarly if cosim is handling (non-parameterized) UML timers, types called
StartExtTimer and FireExtTimer must be declared and defined on a port
called P ExtTimers. When the UML model sets a timer it may be detected
in a TTCN test case by a receive statement for signal StartExtTimer on port
P ExtTimers. To force the Model Verifier to expire the timer, the test script
will send signal FireExtTimer over this port. The signals are defined bellow, in
which the timerHandle will be a unique number defined dynamically by cosim
to distinguish all timers, but particularly relavent for multiple timers of the same
name, timerName is the timer identifier as a character string and timerVal is
its duration as an integer:

type record StartExtTimer
{

integer timerHandle,
integer timerVal,
charstring timerName

};

type record FireExtTimer
{

integer timerHandle
};

The timer handling required modifications to be made to a Tau kernel header
file so that cosim code replaced the normal timer queue handling provided for
simulated time. Currently the timer handling feature of cosim works only for
non-parameterised timers.

cosim produces detailed log files on both Model Verifier and Tester sides that
can be used to debug problems. For example, if there is a decode error of a signal
or operation parameter due to a type mismatch between the UML representation
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and the TTCN representation, the logs will detail both the original encoding and
the point and reason where the decoding failed.

4 The UMB Tool

The UMB tool has two primary functions: translating all class and data defini-
tions within a UML model into TTCN-3 equivalents, and providing a GUI for
defining TTCN templates. Here we concentrate on the translation capabilities
of UMB as this encompasses the issues of mapping UML entities into TTCN,
which is not always straightforward.

The UML entities translated by UMB and the corresponding TTCN repre-
sentation are given in Table 1.

Table 1. UMB translations of UML entities

UML Entity TTCN Entity
class record type

signal record type

port port type

syntypes, enumerations, etc type

external operations signatures

const constant

package module/group

Class definitions in UML are translated to record types in TTCN, as are
signal definitions. If an attribute/parameter is not declared as a ‘part’ in UML
and is an aggregate type, then the TTCN types will correspond to a pointer
representation as described below. However, most signal parameters are passed
by value, i.e. declared as ‘part’.

Port definitions from UML result in a port type declaration in TTCN, however
the signal directions are reversed, so that when a signal is sent out from a UML
model, it may be received by a port of the same name in TTCN, and vice-versa.

UML constants are translated by UMB to TTCN, however since the defining
expression may not be directly translatable to TTCN, only simple arithmetic
expressions are translated, or constants whose defining expression is a literal
value, or another constant.

4.1 Class/Type Translations

Since UML and TTCN are different languages, it is to be expected that the
type systems do not match – indeed even for base types, there is no guarantee
that, say, a Tau UML Integer has the same range as a TTCN integer (by default
it doesn’t – Tau UML Integers are 32 bit and Tester’s 64). Thus some Tau
UML types have to be modeled in TTCN requiring both UMB and cosim to be
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Table 2.

Tau UML Type Base TTCN Representation
Integer integer

Boolean boolean

Real float

Char char

Charstring charsting

Octetstring octetstring

Bit bit

Bitstring bitstring

class record

enum enumerated

choice union

syntype (with constraint) type (with constraint)

Array< , >, String<> record of (integer, type)

Powerset<> set of

Ref, CPtr<> union of null type and record of

consistent. For example, there are no pointer types in TTCN, but Tau UML has
a template for pointers (as support for imported C types and operations) and
can pass parameters by reference.

To provide a degree of implementation independence, all Tau UML atomic
types are translated by prefixing the name with ‘UML ’, the definitions of which
are provided in a cosim supplied TTCN module called predefined. Thus it is
possible to change the range of UML Integer, defined as a subrange of TTCN
integer type, without having to alter the cosim encoders. For example, a Tau
UML Real is translated to ‘UML Real’ whose definition is:

type float UML Real (-1.7976931348623157E308 .. 1.7976931348623157E308);

Table 2 lists many of the UMB/cosim mappings of Tau UML types to the core
TTCN types; in each case this will be via a type definition possibly with subrange
constraint. Tau UML arrays are translated as TTCN lists, using record of.
Each element of the list is a pair consisting of an index and a value. If the
UML array has a fixed size a corresponding length constraint is used in the
TTCN translation. The reason using record of and pairs is to accommodate
arrays of unbounded size and to simplify the cosim encoders, since arrays may
be implemented as linked lists by the Tau code generator.

Of particular complexity is the translation of the CPtr template, used ex-
plicitly in Tau UML representation of C pointer types and implicitly in pass-by-
reference signal/operation parameters. Since TTCN has no equivalent, the types
using this have to be modelled as the union of two types. The first type being a
singleton provided in the cosim predefined package as null type, and the sec-
ond as a record of the dereferenced type. A null pointer is represented by the
singleton value of the null type. A non-null value is represented by the record
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of type, which will contain a list of dereferenced values – one value supplied in
the case of a plain derefererencing, and a list if the pointer represents an array
of values. The latter may occur if a UML external operation originates from an
imported a C/C++ header file that uses pointers for this purpose.

UMB also translates operations in a UML model that are tagged with the
‘External’ stereotype into TTCN signatures. These signatures can be used in
test scripts to service external operation calls made by the model, using the
getcall and reply statements. For non-static class operations, the signature
has an extra leading ’inout’ parameter passed as a pointer representation of the
class itself, so that the class state information is available to the test script.

4.2 Package/Module Structure

UMB preserves UML package structure in the translation by using TTCN mod-
ules and groups. However, unlike UML packages, TTCN modules cannot be
nested. UMB translates top level packages to modules, and nested packages to
groups. Nesting one deep become groups within modules, and further nesting
become groups within groups, etc..

UMB also creates the appropriate TTCN import statements in modules that
correspond to UML import or access dependencies. Further, as TTCN import
statements are not wholly transitive, UMB creates the extra import statements
to match UML scoping. Nonetheless, scoping that matches UML scoping exactly
cannot be reproduced within TTCN, which may result in name clashes. For
example, nested UML packages may reuse the same identifier unambiguously,
but groups in TTCN do not provide separate scope from enclosing modules or
groups.

File and directory structure is also replicated by UMB, so that a Tau UML
source ‘.u2’ file becomes a TTCN source file of the same name but having exten-
sion ‘.ttcn’. UMB prompts the user for a home directory into which the generated
TTCN files and directories will be created.

Using UMB on a complex model can produce many TTCN source files, some
projects have exceeded 50 files. To populate a TTCN project with these cosim
includes a Tau Tester addin that adds any files found on disk into the project,
and warns if there are project files not present on disk. The addin also ensures
that project’s make configuration files are current with the cosim distribution
being used.

4.3 Template Generation

UMB provides a GUI in which TTCN templates can be generated. The tool pro-
vides a nested view of the type structure of the template that may be expanded
and collapsed as desired. For each field, the user can specify an actual value, pat-
tern, expression, template parameter, or template reference. The GUI is useful
because it presents to the user the complete type structure, rather than having
the user remember it. Fig. 1 has a screen shot of the UMB’s template GUI.
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5 UML Testing Profile

Within Motorola some testing teams develop informal test specifications in the
form of natural language and ad-hoc diagrams, which tend towards further man-
ual work during inspections and test execution. Such test specifications are then
manually inspected and subsequently used as the basis of writing test scripts that
are executed automatically. Hence, exploring the use of model-based test specifi-
cation techniques provided a very good opportunity for automating what is a very
manual process, thereby introducing the ability to automatically check test speci-
fications for consistency as well as automatically generate executable test scripts.

The challenge was to explore rigorous notations that would be useable and
understandable by test practitioners, and would fit with the UML model testing
framework presented in this paper. To this end, we reviewed a number of test
specifications used by testing teams written in natural language or informal
diagrams. From the review, we discovered that different approaches nonetheless
had elements in common such as: test configuration, test case behaviour, and
data definitions. These elements can be readily expressed in the UML Testing
Profile [1,5] in which UML Composite Structure Diagrams are used to define test
configurations, Sequence Diagrams and Interaction Overview Diagrams for test
behaviour; TTCN-3 is used for value specification2. A Tau G2 addin has been
developed that supports this approach, called U2TP. Figure 2 illustrates a simple
example of using UML Test Profile to define a test configuration, sometimes
referred to as test architecture, in which a single system under test (SUT) is
connected via different communication ports to two different test components,
TC1 and TC2. Also connectors show that the two test components communicate
directly with each other for synchronisation.

Figure 3 illustrates a possible corresponding test case definition using a Se-
quence Diagram. Notice that the name of signals refer to the data type passed
between entities, and that the parentheses contain the value specification.

In our toolkit, TTCN-3 data types and value specification is used as the action
language for test specification in UML. One reason for this is that UML tools
do not readily support adequate UML instance specification. TTCN-3 value
notation is readable by users, has a well-defined semantics, and can be checked
using the supporting tools.

From this simple example it is apparent that test specifications can be made
more rigorous using UML Testing Profile without compromising their clarity.
In some cases, the use of these notations made it much easier for testers to
comprehend a test specification, as many aspects can now be visualized.

The U2TP Tau addin developed by Motorola to support the UML Testing
Profile uses an internally developed tool called ptk [2] to generate TTCN test
scripts automatically. For example, the U2TP tool will generate the test code
for setting up the test configuration (see Fig. 4), as well as the code for test
behaviour including TTCN test case functions, defaults, verdict handling, etc.

2 Note that UML2.0 does not prescribe an action language. We use TTCN-3 as it
supports value specification (similar to instance specification within UML 2.0).
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Fig. 2. Simple Test Configuration Using the UML Testing Profile

Fig. 3. Simple Test Case Specification Using the UML Testing Profile

From the UML port definitions U2TP will generate corresponding port types
that convey the same signals as in the UML test specification, for example, the
SUTType instance in Fig. 2 has ports SP1 and SP2 (n.b. the realized/required
signals are not shown in the diagram), and in Fig. 4 the corresponding TTCN
port type declarations, SP1 Type and SP2 Type generated by U2TP are shown.
From each instance in the composite structure diagram of Fig. 2, U2TP will
generate a corresponding TTCN component type, again as shown in Fig. 4, in
which its ports are declared based on the generated port types. Thus, generated
TTCN component TC2 TCType represents the UML part TC2, and the component
declares port TP2 to be of port type TP2 Type. Finally, the way the components
are connected in the composite structure diagram contained in Fig. 2 generates
a corresponding function called ptk testcomp config in TTCN that does the
same (note that in TTCN configurations are dynamic) as can be seen in Fig. 4.

In addition to generating test code the U2TP tool will also generate a Mi-
crosoft Word document containing the UML test specification with appropriate
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Definitions generated by U2TP:
type port SP2 Type message {inout charstring}
type port SP1 Type message {inout integer}

Components generated by U2TP
type component TC2 TCType {

var default ptk defaultresult;
timer MaxTimer := 20.0;
port port0 Type port0;
port TP2 Type TP2

}

Architecture built by U2TP
function ptk testcomp config() runs on MTCType {

TC1 := TC1 PTCType.create;
TC2 := TC2 PTCType.create;
map( TC1 : TP1 , system : SP1 );
connect( TC1 : port1 , TC2 : port0 );
map( TC2 : TP2 , system : SP2 )

}

Fig. 4. TTCN-3 Code generated by UTP tool

annotations. In doing so, we have remove the need for one manual step in the
test development process. That is, by having a formal UML model in the place
of an informal document both executable test code and documentation can be
produced automatically.

6 TTCN-3 Language

On the whole, TTCN-3 is a big improvement for model testing over TTCN-2 in
terms of language features and in usability, due having the core language in plain
text. It is not surprising that the type system is different from Tau UML, but it
is rich enough to be able to model the former’s types. In particular the procedure
based communication for servicing UML external operations has proved more
than sufficient – having operation declarations in the form of signatures, and the
getcall and reply statements3 for servicing calls.

One deficiency in comparison to UML is the lack of nested modules, which
either leads to having more import statements than would otherwise be neces-
sary, or to having non-scoped groups - the approach taken by UMB. In any case,
because the scope rules are more restrictive in TTCN, it is not always possible
to map a UML model to TTCN without having name clashes.

The fact that cosim has been able to control UML timers within TTCN, proves
that TTCN-3 would benefit from having native statements for this purpose. In
line with getcall, there could be gettimer, etc.; the default semantics of which
should be non-blocking.
3 Although not used by cosim, there are the matching call and getreply statements.
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Tau UML has the CPtr<> template type to deal with external C/C++ code.
It would be useful if TTCN had something similar rather than leaving it to the
user to invent solution as done by UMB/cosim.

7 Experience

Multiple projects within Motorla are or have used the model test environment, and
eachprojectmayhave severalmodels. There are examples of tests exchanging some
1,000 messages between the model and a single test script, and hundreds of tests
scripts for a single model. Most users use simulated time for model test, whereas
servicing external operations vs. writing their own stubs is a more even split.

Testing does reveal some systematic modeling errors, such as passing signal
parameters by reference rather than by value using ‘part’, however standard
programming errors are more likely to occur, such as incorrect loop index or
array bounds, and cut/paste errors when duplicating similar functionality has
be incorrectly modified in the copied version.

Teams also report the benefit of developing model tests and then reusing them
to test application code running on the target machine where this is possible.
In this case, the application code is generated by the Motorola Mousetrap code
generator [3] that includes the encoders/decoders for marshalling signals. Cor-
responding encoders are also produced by Mousetrap for incorporation with the
Tester run-time API. Here the reported benefit is the ease of debugging tests
(as well as models) through the Tau Tester and Model Verifier GUIs used in
model test prior to and rather than from executables running directly during
application testing.

8 Conclusion

The main test environment described here has been developed over three years,
and has been successfully used by diverse teams in different sectors within Mo-
torola, although the U2TP addin is more recently developed. The test environ-
ment is supported and developed by the Motorola’s Software Design Automation
group for use by all Motorola, and is the only test tool used by Tau UML models
developed for code generation.

Groups are keen to extend the test environment capability for application test-
ing, because building and executing models/tests in cosim has been kept as user-
friendly as possible. However, although there is a Motorola standard encoder/
decoder solution via Mousetrap, application communication is project dependent.

The more recent addition of support for part of the UML Testing Profile is
under evaluation as users are keen to extend their use of UML beyond modeling
systems and applications.

We have suggested areas where TTCN-3 could be extended, such as handling
external timers and support for types that use pointers in the system under
test. However, users find TTCN-3 an improvement over TTCN-2, particularly
because of the textual syntax of the core language.
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Abstract. According to the SDL semantics, input ports “may retain
any number of input signals”, and therefore may grow without upper
bound. While this is a convenient property on design level, it may lead to
illegal behaviour on concrete hardware platforms when a queue overflow
occurs, especially in the context of distributed embedded systems with
severe storage constraints. In this paper, we present a straightforward
extension of SDL in order to specify input port bounds formally. In
our solution, bounds are associated with signals and input ports. We
define both the concrete and abstract grammar and the formal dynamic
semantics of the proposed SDL extension. We have implemented the
extension in Cmicro, and illustrate our solution by examples from the
Assisted Bicycle Trainer, a wireless sensor network.

1 Introduction

Model-driven development (MDD) [1] is a software engineering approach that
places the abstract, formal system model in the center of the development ac-
tivity. The idea is that models guide and direct all development activities, in-
cluding system design, performance assessments, and automatic code generation
from design models. Specification techniques, such as ITU-T’s Specification and
Description Language – SDL [2], are used to specify models [3]. Transformations
of SDL models are supported by reuse techniques, for instance, design patterns
and design components, and by commercial SDL compilers [4].

Among the target domains of MDD are embedded systems in general, and net-
worked control systems (NCS) [5] in particular. Typically, these systems have
scarce resources in terms of storage, communication bandwidth, and energy,
which requires particular care of the system developer already in the design
phase. To cope with scarce resources, SDL language subsets that lead to “pre-
dictable” resource usage have been proposed [6]. For instance, the size of an
agent set can be limited, or dynamic agent creation can be avoided entirely.
SDT Cmicro [4] is an SDL-to-C compiler supporting an SDL language subset
tailored to embedded systems.

Dynamic agent sets are but one source of unbounded resource consumption.
Another source are input ports of SDL agents, which – according to the SDL
semantics [2,7] – “may retain any number of input signals”, and therefore may
grow without upper bound. While this is a useful property on design level, it
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may lead to illegal behaviour on system platforms with insufficient storage to
queue incoming signals in all possible system executions. Some SDL runtime
systems try to cope with this problem by entering an error state in case of queue
overflow. From this state, the SDL system is restarted, which means that all
signals retained in input queues are discarded. Restart is, of course, not a solution
if the overload situation occurs frequently, and certainly not an appropriate
choice in real-time systems.

In practical cases, it is often possible to assure an upper input port bound,
for instance, by applying flow control mechanisms, by limiting the number of
instances of a signal, or by analysing the reachability graph of the specified
system. However, failures in distributed embedded systems could lead to event
storms that overload the SDL system temporarily. To cope with such situations,
incoming signals could be discarded in a well-defined manner, or could replace
queued signals if the input port queue is already filled. Although these measures
are different in nature, they all have the capability of solving the problem of
input port overflow in implementations derived from SDL models. However,
a behaviour ensuring an upper bound of an input port cannot be explicitly
specified in SDL – other than in the case of the size of agent sets.

So far, there is little work related to the formal specification of queue bounds.
Although it is not possible to formally specify upper input port bounds in SDL,
current code generation methodologies rely on the developer for setting sufficient
upper bounds for signal queues [8]. Especially for microcontrollers, model check-
ing is suggested as a methodology to determine accurate queue sizes. However,
model checking is only feasible if all properties of a model are known to the
model checker. In case of an SDL specification, this includes all relevant proper-
ties of the environment. Open SDL systems need to be turned into closed SDL
systems before they can be processed by a model checker. In [9], an approach for
generating a model for the SDL environment that is usable in a model checker
is presented. Unfortunately, it is sometimes impossible to specify the worst case
behaviour of the SDL environment without considering an infinite state space,
which will cause a model checker to fail. In this case, the only solution is to
determine the maximum queue size by testing, which cannot guarantee a cor-
rectly dimensioned signal queue and therefore cannot guarantee the absence of
potential queue overflows.

In this paper, we propose an extension of SDL for the specification of input
port bounds. More specifically, upper bounds for the number of signals of the
same type can be formally specified for each input port. If the bound is reached
and another signal arrives, the oldest signal of the same type is deleted from the
input port, and the new signal is appended. This solution is especially suitable in
the context of networked control systems (NCS), where typically only the most
recent sensor values are of interest.

The paper is organised as follows. In Sect. 2, we present an extension to
SDL to specify input port bounds. To maintain compatibility with existing SDL
tools, we also define an extension through annotations. To illustrate the usage,
we show excerpts from the SDL specification of the Assisted Bicycle Trainer: a
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mobile sensor network for group training of cyclists. In Sect. 3, we incorporate
the extension to SDL into the dynamic formal semantics, which turns out to be
straightforward. Based on an alternative input port bound definition by anno-
tations, we have modified the SDL-to-C compiler Cmicro [4] (Sect. 4), and have
performed simulations to show the benefits in a microcontroller setting (Sect. 5).
In Sect. 6, we discuss pros and cons of specifying input port bounds, followed by
conclusions in Sect. 7.

2 An SDL Extension for Input Port Bounds

Input port bounds can be specified in different ways, for example:

– Explicit input port bound specification: A bound is specified for all input
ports of an agent set.

– Implicit input port bound specification: A bound is specified for each element
of the set of signals in all channels or gates leading to an agent set1. The
bound for the input ports is derived as the sum of the bounds for signals
consumed by the agents’ state machines.

In both cases, the bound is applied to the input port of each instance of the
agent set. If the number of instances in the agent set is itself bounded, then
the number of signal instances (of a given signal type) that can be queued is
bounded too, assuring predictable resource consumption.

The explicit input port bound specification has the advantage that the number
of queued signals of different types can vary within the specified bound. In
the implicit case, bounds can be specified on a per-signal-type basis. Thus, for
each signal type, there is a guaranteed number of slots in the input port, which
cannot be filled by signals of other types. This solution is especially suitable for
networked control systems, where the most recent value of each sensor is to be
kept in the input port. This property cannot be guaranteed by the explicit input
port bound specification. Therefore, we adopt the implicit input port bound
specification, which covers all interesting cases that have occurred in our projects
so far.

For implicit input port bound specification, we introduce two complementary
syntactical SDL language extensions:

– Global bound specification: Bounds are specified together with signal defini-
tions, with the default being “unbounded” if no bound is given.

– Local bound specification: Bounds are specified for individual elements of the
set of signals in all channels or gates leading to the agent set, with the default
being “global bound” if no local bound is defined.

The specification of global bounds is very concise, since there is only one
definition per signal. On the other hand, the specification of local bounds gives
1 We omit the treatment of implicit input signals, exceptions, and timer signals. For

timer signals without parameters, for instance, the upper signal instance bound is
always 1.
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more flexibility, as different bounds can be associated with agent sets that receive
signal instances of the same type – a frequent case in our projects. Also, if the
signal definition is imported from a package – another frequent case –, it is
preferable to specify local bounds in order to keep the package unchanged. Note
that both styles can be combined such that the global bound defines the default
value, which can be overruled by a local bound.

Local bound specification. To specify local bounds, we extend the concrete
and abstract syntax of SDL. In the concrete syntax, we add an optional at-
tribute <signal bound> to the signal list associated with channels and gates,
put into square brackets. In the abstract syntax, the extension is represented
by an attribute Signal-local-bound-set of Agent-definition, containing all signal
types for which a bound has been specified, together with the specified nat -value.

Concrete Grammar

<signal list item> ::= <signal identifier>
[<signal bound>]

<signal bound> ::= <left square bracket>
<Natural simple expression>
<right square bracket>

Abstract Grammar

Agent-definition :: Agent-name
Number-of-instances
Signal-local-bound-set
Agent-type-identifier

Signal-local-bound :: Signal-name
Signal-bound

Signal-bound = Nat

Fig. 1. SDL specification of Assisted Bicycle Trainer on system level (excerpt)

Global bound specification. To specify global bounds, we extend the concrete
syntax by adding an optional attribute <signal bound> to <signal definition
item>. In the abstract syntax, this is transformed to the local bound specifica-
tion, i.e., all signal bounds are directly associated with agent definitions.
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Concrete Grammar

<signal definition item> ::= <signal name>
[<formal context parameters>]
...
[<sort list>]
[<signal bound>]

Fig. 2. SDL specification of Assisted Bicycle Trainer on process level (excerpt)

Figure 1 shows how global bounds are specified on SDL system level. Here,
a global bound of 1 is associated with the definitions of the SDL signals Net Rx
and Net Tx. For all other signals, the default “unbounded” holds. Local bounds
are specified on process level and associated with elements of signal lists (see
Fig. 2). For instance, a local bound of 5 is specified for incoming signals of
type UART Rx. The reasoning behind this choice is that up to 5 sensors are
connected via serial lines. Periodically, these sensors deliver status values (e.g.,
current speed, heart rate, pedal force) to the cyclist system, where they are
accumulated in the SDL process UartDriver before being forwarded in one signal
of type Serial Rx to the SDL process Cyclist. If for some reason - for instance,
reduced duty cycles2 due to energy shortage - these signals cannot be processed
2 In NCSs, a duty cycle is the ratio between active and total period.
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before the next set of sensor values is received, the new sensor values are used
instead. Periodically, the SDL process Cyclist broadcasts aggregated sensor values
via ZigBee (communication processor CC2420) to all other cyclist nodes. Local
and global bounds are specified to limit the number of queued signals outbound
(Net Tx) and inbound (CC2420 Rx and Net Rx) to 1. From the global and local
signal bounds, it can be derived that the input port bounds of Cyclist, UartDriver,
and CC2420driver are 2, 6, and 2, respectively. Note that in case of substructures,
only local bounds for signals consumed by the state machines of the given agent
set are to be specified (well-formedness condition).

3 Formal Dynamic Semantics of Input Port Bounds

Having decided on how to specify input port bounds, there still remains the
question of how to treat incoming signal instances in situations where the input
port queue has already reached its upper bound. The following solutions are
perceivable:

– discard : The incoming signal instance is discarded.
– replace: The incoming signal instance replaces the first signal of the same

type.
– delete/append : The incoming signal is appended, while the first signal of the

same type is deleted.

The discard solution solves the problem of input port overflow in general, and
is suitable in event storm situations, where it suffices to keep the first event. The
replace solution is an interesting candidate, if the specified bound is 1, as it would
avoid starvation of signals - new signals take the place of previous signals of the
same type. However, this would violate the property of input ports that signals
are ordered according to their arrival time. In the following, we elaborate on the
delete/append solution, which maintains that property and is also adequate for
networked control systems, where the most recent sensor value is to be kept. It is,
however, also possible to support several solutions, and to let the system designer
specify which one to apply.

3.1 Delete/Append Semantics of Input Port Bounds

Defining semantics for input port bounds, we modify the signal flow model of
the formal dynamic semantics of SDL [7], defined using Abstract State Ma-
chines (for an introduction to ASMs, see [10]). We define new derived functions,
predicates and rule macros for reading bounds from the abstract syntax, and
for inserting signals into bounded queues. Of the signal flow model, only rule
macro DeliverSignals ([7], Section 2.3.2.1) is modified3. Note that while the
formal dynamic semantics defines the semantics of SDL-2000, all definitions in
this section apply to SDL-96 as well.
3 Note that transition selection and, in particular, the semantics of the save construct

are not affected.
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The derived function bound forms the interface to the abstract syntax. It
returns the input port bound for input port g and signal type s. If no bound is
specified for signal s in the agent that owns g, the value zero is returned.

bound(g: Gate, s: Signal) : Nat =def

let slb = take({b ∈ g.myagent.agentAS1.s-Signal−local−bound-set:
b.s-Signal−name = s.s-Signal−name})

if slb �= undefined then slb.s-Signal−bound else 0 endif
endlet

We define two derived predicates to determine if a signal can be inserted into
the input queue (the schedule of a gate) without violating the specified bound.
Insertable(s,g) holds if the number of signals of type s in the input queue of g is
smaller than the bound, or if no bound is defined. Insertable(s) holds if signals
of type s can be inserted into some input port of the current agent set without
violating a bound.

Insertable (s : Signal, g: Gate): Boolean =def

bound(g, s) = 0 ∨ |{ si ∈ g.schedule | si .signalType = s}| < bound(g, s)

Insertable (s : Signal): Boolean =def

∃ sa : sa ∈ SdlAgent ∧ sa .owner = Self ∧ Insertable (s , sa. inport)

If a signal of type s is inserted into a queue that already holds the maximum
number of signals of this type, the oldest signal in the queue of the same type is
deleted. Function deleteByType(s,siSeq) returns a queue without the first - and
therefore oldest - signal of type s in queue siSeq.

deleteByType(s: Signal, siSeq: SignalInst∗): SignalInst∗ =def

if siSeq = empty then empty
elseif siSeq .head.signalType = s then siSeq. tail
else < siSeq.head > ∩deleteByType(s, siSeq . tail )
endif

InsertInport is a rule macro for the insertion of signals into the input queue
of agents. If signal si can be inserted without violating the bound of the input
queue, the macro is equivalent to Insert ([7], Section 2.1.1.2) on unbounded
queues (line 3). Otherwise, the signal is inserted into a queue from which the
oldest signal of the same type was deleted (line 5).

Rule macro DeliverSignals delivers signals from gates of agent sets to the
input queues of contained agents. Underlined are the modifications made to De-

liverSignals to support bounded queues, using the functions and predicates de-
fined above. Calls to rule macro Insert are replaced by InsertInport, respecting
the bound defined for the input queue for the corresponding agent and signal type.

1 InsertInport(si: SignalInst, t: Time, g: Gate)≡
2 if Insertable (si .signalType, g) then
3 g .schedule := insert (si , t , g.schedule)
4 else
5 g .schedule := insert (si , t , deleteByType(si.signalType, g .schedule))
6 endif
7 si . arrival := t
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DeliverSignals covers two cases. In the first case (lines 6-8), the signal is
addressed explicitly by PId, and the target is deterministic. In the second case
(lines 10-12), the signal can be delivered to any agent in the agent set.

Signals should only be deleted if absolutely necessary. In the second case,
choosing an arbitrary agent can lead to a signal being deleted, although another
agent of the agent set has fewer signals of the corresponding type in its input port
than specified by the bound. Therefore, we choose an agent where the number of
signals of type s in input port g is smaller than the bound (i.e., Insertable(s,g)
is true), if such an agent exists in the current agent set (i.e., Insertable(s) is
true), and an arbitrary agent from the agent set otherwise.

1 DeliverSignals ≡
2 choose g: g ∈ Self . ingates ∧ g.queue �= empty
3 let si = g.queue.head in
4 Delete(si, g)
5 if si .toArg ∈ PId ∧ si .toArg �= undefined then
6 choose sa: sa ∈ SdlAgent ∧sa.owner = Self ∧ sa . self = si.toArg
7 InsertInport( si , si . arrival , sa. inport)
8 endchoose
9 else

10 choose sa: sa ∈ SdlAgent ∧ sa.owner = Self ∧
Insertable(si.signalType) → Insertable(si.signalType, sa.inport)

11 InsertInport( si , si . arrival , sa. inport)
12 endchoose
13 endif
14 endlet
15 endchoose

3.2 Signal Starvation and Replace Semantics

The delete/append solution formalized above can lead to signal starvation. Con-
sider a scenario with two signal types a and b, with signals of these types arriving
alternately. Further, let the bounds for a and b be set to 1. If signals of type a
are always consumed before the next signal of that type arrives, no deletions will
occur with regard to a. If, however, signals of type b are never consumed before
the next signal of that type arrives, then according to the delete/append seman-
tics, the old signal is deleted and the new signal appended after the previous
signal of type a. This effect would lead to starvation of signals of type b.

Signal starvation can be avoided by replacing signals instead of deleting and
appending them. In other words, the incoming signal is not appended to the
queue in cases where the bound has been reached, but overwrites the oldest
signal in the queue. There are two problems with this solution. First, the SDL
semantics states that signals in the input port queue are ordered by arrival time.
This property would be violated by replacing the oldest signal. Second, if the
signal bound is greater than 1, overwriting of the oldest signal would result in
an overtaking of signals of the same type. Overwriting the newest signal would
solve that problem, but certainly is not a good idea either. For these reasons, we
have not chosen the replace semantics in our solution.
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4 Implementation of Input Port Bounds

To implement the proposed extension for specifying input port bounds, several
SDL tools are to be modified. In particular, changes of the SDL editor, the SDL
analyzer, and the SDL compiler are necessary. As far as commercial tool en-
vironments are concerned, these changes can only be implemented by the tool
provider, because the source code is usually not publicly available. To avoid
this difficulty, we propose an alternative signal bound definition by annotations,
which is compatible with existing SDL editors. Furthermore, we provide an im-
plementation of signal bounds in Cmicro, an SDL-to-C compiler that is part of
the Telelogic TAU SDL Suite.

4.1 Defining Signal Bounds by Annotations

Instead of using the SDL extension introduced in Sect. 2, signal bounds can
be expressed by annotations. This has several advantages. First, annotations are
compatible with existing SDL editors, and are processed into SDL-PR with com-
ments. Second, annotations defining signal bounds can be introduced in different
places of an SDL specification, for instance, on system level, thus avoiding the
modification of imported packages. To define signal bounds by annotations, we
use the following syntax:

#BOUND(agentIdentifier, signalType, signalBound)

By using agent identifiers instead of agent names, annotations can be placed
on different structural levels. In general, the structural context of the annotation
applies, improving readability. In Fig. 3, the signal bounds specified in Fig. 1
and Fig. 2 are expressed through annotations of this kind. Note that the formal
comment is attached to the block Cyclist, therefore, it suffices to use process
names to uniquely identify input ports. In order to express global bounds, we
can associate annotations with signal definitions – an option we omit here.

4.2 Implementing Signal Bounds in Cmicro

In this section, we elaborate on implementing signal bounds in Cmicro, an SDL-
to-C compiler of the Telelogic TAU SDL Suite targeted to embedded systems.
Since these systems suffer severe storage constraints, it is particularly important
to support signal bounds. Our solution consists of three steps. First, all annota-
tions defining signal bounds are extracted into a definition file. Second, our SDL
Environment Framework (SEnF) is extended to support signal bounds. Third,
the Cmicro runtime library is modified.

Definition file. The SDL-PR file is parsed twice, once by the SDL-to-C com-
piler, and once by our preprocessor that extracts all annotations expressing signal
bounds. The output of the preprocessor is a definition file that is used by the
SDL Environment Framework (SEnF). For the example in Fig. 3, the following
definition file is produced:
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1 BOUND(CC2420Driver, CC2420 Rx, 1)
2 BOUND(CC2420Driver, Net Tx, 1)
3 BOUND(UartDriver, UART Rx, 5)
4 BOUND(UartDriver, Serial Tx, 1)
5 BOUND(Cyclist, Serial Rx, 1)
6 BOUND(Cyclist, Net Rx, 1)

Extensions of the SDL Environment Framework. We have extended our
SDL runtime environment “SEnF”’ with a function signalBoundExceeded that
checks whether a signal bound has been exceeded. This function is generated at
compile time, and is specific to the generated SDL system. With respect to the
limited memory of embedded systems, we have decided to create an implemen-
tation that is stored in ROM, which usually is substantially larger than RAM on
these devices. Therefore, we transform the definition file, which was generated
by the preprocessor, into the function signalBoundExceeded :

1 // Check if a signal bound was exceeded
2 // - This requires a changed mk_queue.h
3 int signalBoundExceeded(
4 xPID receiverPid,
5 xmk T SIGNAL signalId,
6 int signalsInQueue)
7 {
8 // Checking signal bounds
9 #include <signalbounds.def>

10

11 // Signal bound not exceeded
12 return 0;
13 }

Fig. 3. SDL specification with annotations (excerpt)
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The C-preprocessor is used to generate a tailored function signalBoundEx-
ceeded for every signal type for which a bound has been specified. The generated
definition file is included, with the BOUND macros in the definition file being
transformed into statements checking the signal bounds. The implementation of
the BOUND macro depends on the SDL compiler used. The definition for the
Cmicro SDL-to-C compiler is as follows:

1 #define BOUND(agentIdentifier, signalID, signalBound) \
2 if ( \
3 (receiverPid == GLOBALPID(XPTID ## agentIdentifier)) && \
4 ( signalId == signalID) && \
5 (signalsInQueue >= signalBound) \
6 ) return 1;

Cmicro runtime library. The Cmicro runtime library requires a modification
of the function implementing the InsertInport rule macro. By default, the
Cmicro library keeps all SDL signals in a global linked list. When inserting a
new signal into the input port of a process, this list is inspected.

1 for( rover = XMK QUEUE ADR; ∗rover != (T E SIGNAL xmk RAM ptr) NULL;
rover = &(( ∗rover )−>next ) );

We have modified this behaviour to check signal bounds for the inserted signal
while traversing the list. All signals of the same type as the inserted signal waiting
at the same gate are counted. A reference to the oldest signal is stored for deletion
in case the signal bound was exceeded. The special case where the signal that
has activated the current transition is still in the queue must be considered,
otherwise the same signal could be deallocated twice.

1 // Count queued signals of same type as inserted signal
2 int queuedSignalsOfType = 0;
3

4 // Inspect the signal queue
5 rover = XMK QUEUE ADR;
6

7 while (∗rover != (T E SIGNAL xmk RAM ptr) 0) {
8 if ((rover−>rec==p Message−>rec)&&(rover−>signal==p Message−>signal))

{
9 if (( oldestSignal == 0) && (oldestSignal != XMK CURRENTSIGNAL))

10 oldestSignal = ∗rover;
11 queuedSignalsOfType++;

The generated signalBoundExceeded function is used to check if the signal
bound for the inserted signal was exceeded. In that case, the oldest signal is
removed from the queue to stay within the specified bounds.

12 if (signalBoundExceeded(p Message−>rec, p Message−>signal,
queuedSignalsOfType) != 0) {

13 // Signal bound exceeded
14 if ( oldestSignal == 0) {
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15 // - Technically, the signal that caused the queue to
overflow is

16 // not in the queue anymore
17 // - The SDL queue must be of maximal size of at least the

sum of
18 // all signal bounds + 1
19 // - Leave the signal alone and let rover point to the next

signal
20 // The signal will be removed by the runtime environment

after
21 // the current transition has ended. Freeing now is

dangerous.
22 rover = &(( ∗rover )−>next );
23 } else {
24 // Delete current signal
25 T E SIGNAL xmk RAM ptr curSignalBackup =

XMK CURRENTSIGNAL;
26 XMK CURRENTSIGNAL = oldestSignal;
27 xmk RemoveCurrentSignal();
28 XMK CURRENTSIGNAL = curSignalBackup;
29 }
30

31 // One signal less in queue
32 queuedSignalsOfType−−;

After traversing the queue, the signal is appended at the end of the queue.
This behaviour of Cmicro has not been modified.

5 Simulation Experiments

With the Telelogic Cmicro SDL-to-C compiler extended by signal bounds as
described in Sect. 4, we have performed simulation studies of the Assisted Bicycle
Trainer (ABT). In the simulation, we are using the signal bounds specified in
Sect. 2 and Sect. 4, yielding a global queue bound of 104. The ABT is a wireless
sensor network, with up to 5 sensors connected via UART. In the simulation, we
assume that these sensors start operation by transmitting one sensor value per
second. All sensor values received in the interval of one second are then consumed
by UartDriver (see Fig. 2), accumulated, and forwarded to Cyclist. To ensure
proper operation, a timer set to 1 second is used to trigger UartDriver. After
receiving and processing the accumulated sensor data, Cyclist broadcasts these
data via CC2420Driver.

The simulation starts with a nominal number of 5 sensor values per second.
After 3 seconds of simulation time, the total number of sensor values per second
is increased by one every second, up to 15. Since UartDriver starts consuming
values only after the timer has expired, and the signal bound for UART Rx is 5, this
means that old signals are deleted from the queue as soon as the signal bound has

4 Recall that Cmicro uses one global input port queue.
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been reached, and new signals are appended. In Fig. 4, the resulting behaviour
is shown. The solid curve represents the number of received sensor values per
second, starting with 5. The dotted curve marks the number of deleted sensor
values per second, which is the number of received values minus 5. Finally, the
dashed line shows the number of accumulated sensor data broadcasts per second,
which is 1. Obviously, the system behaves as expected, even in periods where
too many sensor values are produced.

Fig. 4. Assisted Bicycle Trainer: Simulation with specified signal bounds

In Fig. 5, the same scenario has been simulated using the original Telelogic
Cmicro compiler, i.e. without implementing signal bounds. We have set the
global queue size to 14, which results from the intended global queue bound
of 10 plus 1 timer signal plus 3 internal Cmicro slots. In the simulation, sensor
data are accepted until the actual queue size exceeds 14. Note that queue slots
that are reserved for other signal types in the implementation supporting signal
bounds are also used for sensor data, therefore, more than 5 sensor values may
be stored. This works fine as long as all incoming signals can be appended to
the queue. As soon as the queue is filled, Cmicro starts discarding incoming
signals5, regardless of their type. In the simulated system, this has the effect
that the timer signal that is supposed to trigger UartDriver to receive and ac-
cumulate sensor data is discarded as well. As a consequence, no further sensor
data are removed from the queue, therefore, no sensor data are accumulated and
forwarded to Cyclist, which leads to a complete system failure.
5 Alternatively, Cmicro may be configured to raise an exception in case of queue

overflow.
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Fig. 5. Assisted Bicycle Trainer: Simulation without specified signal bounds

6 Discussion

All types of embedded systems may suffer from unpredictable memory consump-
tion at runtime. This can happen due to asynchronous communication, resulting
in queue overflows. It can also happen due to synchronous interaction, e.g., re-
cursive procedure calls, yielding stack overflows. In both cases, non-deterministic
or illegal system behaviour can be the consequence. In this paper, we have pre-
sented one strategy to handle queue overflows by specifying queue bounds in a
problem-specific way at design time, and by defining the system behaviour in
case of signal arrivals when the input port is filled. Other strategies handle queue
overflows and stack overflows at runtime:

– Queue overflows : One technique used in existing runtime environments is
exception handling. Exceptions are raised when an undesired system state
is entered. Depending on the runtime environment, either the specified sys-
tem or the runtime environment is forced to handle the exception. Existing
runtime environments follow two strategies for handling exceptions due to
queue overflows. Either the system is halted immediately, or the signal that
caused the overflow is dropped. Both strategies will leave the system in an
unpredictable and unknown state, resulting in non-deterministic system be-
haviour. Predictable behaviour can only be restored by resetting the system
into a known state. Further, we observe that exception handling due to queue
overflow is undesirable in general. The internals of queue handling are spe-
cific to the runtime environment. Therefore, resolution strategies for queue
overflow are not specified, and may therefore depend on the platform. Spec-
ifying application specific strategies like deferring signals in the case of full
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queues is also not efficient, since then, low-priority data signals can block
high-priority control signals for an unpredictable amount of time.

– Stack overflows : Stack overflows are handled by the runtime environment
or by the operating system. Usually, it is not possible to return to a stable
system state once a stack overflow has occurred. Therefore, the only possi-
bility of handling stack overflow is to reset the system to a well-defined state,
resulting in data loss and a delay due to the reset procedure.

While it is possible to combine the strategies above with our solution to queue
bounds, they cannot be used to avoid system misbehaviour due to unpredictable
memory consumption, which is a more general problem. The informal runtime
semantics of UML2 is similar to the formal semantics of SDL. Some UML2 tools,
e.g. Telelogic TAU G2 [11], even translate UML models into SDL systems. This
shows that the applicability of the work presented in this paper is not limited
to the domain of SDL systems.

7 Conclusions and Future Work

The SDL semantics states that input ports “may retain any number of input
signals”. However, executing specifications on a concrete hardware platform, this
property cannot be guaranteed, leading to illegal behaviour in cases of insufficient
memory.

In this paper, we have proposed an extension of SDL to support the specifica-
tion of input port bounds. We have presented both an extension of the concrete
and abstract syntax of SDL, and an extension based on annotations compatible
with the concrete syntax of SDL-96 and existing SDL editors. We have defined
the semantics of input port bounds formally, by adapting the dynamic seman-
tics of SDL-2000. The required changes consisted of 20 additional lines of ASM
rules, and the modification of only 3 lines. Based on annotations, we have im-
plemented input port bounds into the Telelogic Cmicro SDL-to-C compiler, and
have presented simulation studies based on this implementation.

We believe that the extension proposed in this work is of interest for future
standardized versions of SDL. As such, it should be discussed in the standardiza-
tion committee of ITU-T. Also, tool providers with customers in the embedded
systems domain using SDL as design language could have a strong interest. In
our future work, we intend to adapt our own SDL-to-C++ compiler ConTraST
[12] to support input port bounds. Furthermore, we will use the extension in our
projects in the ubiquitous computing domain.
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Abstract. The paper describes syntax, behavior and formal semantics
of a new class of timed automata, which are tailored for modeling the
behavior of real-time systems. A formal method for automatic generation
of programs is developed around this model. The method starts from
modeling the desired behavior of the system under design by means of
a UML-based state machine with the ability to measure time, and ends
up with a complete program written in one of the IEC 1131 languages.
The translation process is done automatically, and the semantics of the
resulting program is isomorphic to the semantics of the model.

1 Introduction

Control applications are usually reactive in that they must respond to a series
of events according to a strictly defined stimulus-response pattern. Finite state
machines (FSM) are one of the best known models that have been recognized
as useful to specify such requirements. The advantages of a classical FSM model
are conceptual simplicity and mathematical precision. The model is executable
and analyzable, and has the potential for automatic code generation. What is
missing in a classical finite state machine is the ability to model time.

Several time extensions to FSM have been developed and described in the lit-
erature. The most widely accepted models of timed automata [1,2] and timed I/O
automata [3] are used mainly for modeling and verification of time-dependent
behavior of state systems. Still another models of time triggered automata [4]
and PLC-automata [5,6] are used for code generation. Neither of these models
accounts for hierarchical structuring of states that is defined in the UML [7].

The goal of this paper is to present an original model of a finite state time
machine that extends the classical Moore automaton in the dimension of time.
The work is aimed at the development of programs for polling-type controllers,
i.e. programmable logic controllers (PLC) and their software-based counterparts,
known as soft-PLC. An early version of the model, described in [8], allowed for
only one running timer at a state (similar restriction holds for a PLC-automaton
[5,6]). What is new in this paper, is a support for several timers running at
each state, and a more formal treatment of the hierarchy of states and history
indicator defined in UML.

PLC controllers are used in industry for solving time- and safety-critical prob-
lems, like traffic or process control. A PLC controller is a device that has several
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inputs and outputs where sensors and actuators can be plugged in. The con-
troller executes in a cyclic manner, and every cycle consists of the following
three phases: Polling the inputs, executing the program and updating the out-
puts. Cyclic pattern of execution and the duration of each cycle introduce an
explicit granularity of time, which is measured and guaranteed by the operating
system. Output signals of the controller are discrete and change only at the edge
of two consecutive cycles of execution.

Programming of a PLC deals with the computing phase of the execution
cycle only. The core part of the computation relates to calculations of Boolean
conditions that define the next state of the controller and the values of two-
state output signals. The programming languages, standardized in [9], include:
Instruction List (IL), Structured Text (ST), Ladder Diagram (LD) and Function
Block Diagram (FBD).

A finite state time machine defines the algorithm for computing the output
signals of a controller with respect to input signals and time. Once the algo-
rithm has been defined, it can be verified and validated, and then converted into
a target program code automatically. Because the translation of the model is
formally proven, no further verification of the target program is necessary. It is
worth noting that FSM-based models are recommended by IEC for modeling
the behavior of safety related systems [10].

The paper is organized as follows. Sect. 2 provides the reader with a short
overview of the subset of UML-based statecharts that are used in the paper.
Sect. 3 gives a formal definition of finite state time machine that defines the
semantics of the statechart model. The process of converting a finite state time
machine into a program is described in Sect. 4. The description is illustrated
using a case study of a plant controller. Final remarks and plans for future work
are given in Conclusions.

2 UML Statecharts

PLC controllers are used in many real applications as part of a bigger system
that consists of several components coupled and working together. The required
behavior of such a system, and of all of its components, can be described by a
set of UML-based models [11]. The conceptual tool that is offered by UML to
model this part of processing, which is done by a PLC, is statechart – a model
that describes the states an object can have and how events (input signals) affect
those states over time.

Basically, statechart is a graph that shows how an object reacts to events
that originate in the outside world. It consists of states that capture distinct
modes of the object behavior and transitions between states that are caused
by events and accompanied with actions. The modeling concept is simple and
consistent with the theory of finite state machines. Relating this model to a
PLC one can note that events correspond to the occurrences of input signals
and actions correspond to changes of the output signals. States and transitions
between states are defined by a controller program.
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Modeling real systems that can have hundreds of states requires means for
managing the complexity. Therefore UML adds further elements to this simple
model:

– Hierarchy of states.
– Entry and exit actions of a state that are executed on entering and exiting

the state.
– Internal transitions that are handled without causing a change in state.
– Deferred events that are memorized for handling in another state.
– Guards, i.e. Boolean conditions that enable or disable transitions.
– Time events that correspond to the expirations of predefined periods of time.

UML does not define any formal operational semantics for this model. There-
fore multiple approaches have been developed and described in the literature,
based on specification languages [12,13], graph transformations [14] or by con-
verting the model to hierarchical automata and providing a semantics by a
Kripke structure [15]. All those formalisms deal with a restricted subset of
UML statecharts, extensively use advanced mathematical formalisms and are
very hard to understand for software and control engineers.

The approach presented in this paper is much simpler and remains as close
to the model of a finite state machine as possible. The effects of the extensions
defined in UML on the semantics of a finite state machine are discussed in the
rest of this section.

Hierarchy of states. One way to capture the behavior of a complex system is
to describe its behavior using many levels of abstraction. UML offers hierarchical
statecharts, in which a state can have many sub-states nested to an arbitrary
level. Transitions between states can originate in and can lead to a state at an
arbitrary level of nesting. A simple example of a hierarchical statechart is shown
in Fig. 1.

Fig. 1. A hierarchical statechart

Hierarchy of states alone does not add any new semantics to the model, in
that a hierarchical diagram can always be converted into a “flat” one. In fact, an
automaton is always in one of the leaf states of the hierarchy. A transition that
originates in a super-state can be considered an abbreviated notation for a bunch
of transitions that originate in each of its internal sub-states. The meaning of
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a transition that leads to a super-state is also clear, because such a transition
leads to the initial sub-state of this super-state. For example, transition x from
state A to B in Fig. 1 stands for a pair of transitions: One from state A1 to B1
(the initial state of B) and the other one from state A2 to B1.

The problem lies in the history indicator (circled H in Fig. 1). A transition that
leads to such an indicator must enter the last sub-state on exit of a super-state.
This way the history indicator introduces a hidden memory, which stores the last
sub-state on exit of this super-state, which contains the history indicator. This
can be expressed in the “flat” model by multiplication of states. An algorithm
for flattening the hierarchy of states is described in Sect. 4.

Entry and exit actions. Entry and exit actions of a state can easily be
reassigned to transitions that input or output the state. No new semantics to
the model is added.

Internal transitions. An internal transition is a transition that performs an
action without changing the state. This is equivalent to the concept of Mealy
automaton, whose output depends on the current state and the current input, as
opposed to Moore automaton, whose output depends on the current state only.
Both types of automata have been proved equivalent.

Deferred events. A deferred event is an event, which does not trigger any
action or transition immediately, but is stored in order to make a transition in
one of the future states. Such a feature violates the rule that the only memory
of an automaton is state. A state before observing a deferred event and the state
after this event has occurred are different states that can be modeled separately.

Guards. Guard conditions deal with the attributes of an object in object-
oriented modeling, and do not apply to modeling of PLCs.

Time events. A substantial extension to the model of a finite state machine
is the introduction of time. A time event originates inside the automaton, and
breaks the rule that the reaction of the automaton to an external event
depends on the current state only. An additional memory of timers that mea-
sure the flow of time is needed. This feature will be treated in detail in the next
section.

3 Finite State Time Machine

Finite state machine is a recognized tool for defining the algorithms of processing
the enumerative sets of events. The automaton-like graphical models are formal,
as well as understandable to engineers and computer programmers. What is
missing in a classical finite state machine is the ability to model time. In this
section we define a new model of a finite state time machine that adds time to
the classical Moore automaton.

Definition. A finite state time machine is a tuple A = (S, Σ, Γ, τ, δ, s0, ε, Ω, ω),
where
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S is a finite set of states,
Σ is a finite set of input symbols,
Ω is a finite set of output symbols,
Γ is a finite set of variables called timer symbols,
τ : Γ → 2S × R+ is an injective function, called timer function

(with projections denoted τS : Γ → 2S and τR : Γ → R+, respectively),
δ : S × Σ × 2Γ → S is a partial function, called transition function, such

that: [(s, a, Θ) ∈ Dom(δ)] ⇔ (∀t ∈ Θ)[s ∈ τS(t)]
s0 ∈ S is the initial state,
ε ∈ R+ is the granularity of time,
ω : S → Ω is an output function.

Notation: R+ is the set of positive real numbers, Dom(δ) is the domain of
function δ. Cardinality of a set X will be denoted card(X), and an empty set
will be denoted φ.

It can be noted from the above definition that a finite state time machine is
finite, and looks much like a Moore automaton with three additional elements:
Γ , τ , ε. The rationale that stands behind the timer symbols can be explained
as follows. The only memory of a Moore automaton is state. Adding time to
such an automaton adds an additional kind of memory that stores durations of
time intervals. This additional kind of memory is explicitly shown as a set of
timer symbols. A finite state time machine responds to input symbols and timer
symbols that appear when a time interval expires. Each timer symbol will be
converted in the implementation process into a timer device that measures time.

3.1 Execution of a Finite State Time Machine

Moore automaton models a device that cooperates with its environment. The ex-
ecution of an automaton starts in state s0. The environment generates a sequence
of input symbols a0, a1, . . . , ak, . . . and the automaton moves through a sequence
of states s0, s1, . . . , sk, . . . such that sk+1 = δ(sk, ak) for k = 0, 1, . . .. Each state
sk of the automaton corresponds to an output symbol qk = ω(sk). This way
the automaton responds to a sequence of input symbols a0, a1, . . . , ak, . . . with
a sequence of output symbols q0, q1, . . . , qk, . . ..

A finite state time machine adds to the model the dimension of time. Each
timer symbol t ∈ Γ is a variable, which takes values from the set R+. The current
valuation of a variable t is interpreted as the duration of a period of time.

Timer symbols in Γ can be set in an arbitrary order defined by a function:
t : {1 . . . n} → Γ where n = card(Γ )

Particular timers from Γ are now denoted t1 . . . tn.
The current value t̃ of timer symbols can be described as a vector of values:
t̃ : {1 . . . n} → R+ where n = card(Γ )

The current values of particular timers are denoted t̃1 . . . t̃n.
The execution of a finite state time machine starts in state s0, with the values

of all timers equal to 0. For a given state sk and a valuation of timers t̃k, k =
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0, 1, . . ., there exists a set Θ of expired timers, defined as:

Θ(sk, t̃k) = {ti ∈ Γ : sk ∈ τS(ti) and t̃ik ≥ τR(ti)}
The machine executes in state sk with the valuation of timers t̃k, k = 0, 1, . . .,

by taking an input symbol ak and moving to the next state sk+1 defined by the
transition function:

sk+1 = δ(sk, ak, Θ(sk, t̃k))

When the machine enters a state sk+1, k = 0, 1, . . ., time advances and the
values of timers change reflecting the elapsed time interval ε:

t̃ik+1 =
{

t̃ik + ε if sk+1 ∈ τS(ti) and sk ∈ τS(ti)
0 otherwise

When the valuation of timers t̃ changes, the set Θ of expired timers may
change as well. This way a finite state time machine can respond to the flow of
time, even if sk+1 = sk and ak+1 = ak. Please note that the last argument of δ
is a set of all timers expired in a given state and time, hence, no conflict exists
if several timers expire at the same time instant.

Each state sk of the automaton corresponds to an output symbol qk = ω(sk).
By that means the automaton responds to an input sequence a1, . . . , ak, . . . with
an output sequence q1, . . . , qk, . . .. The output symbol q0 = ω(s0) depends on
the definition of function ω only, and has no direct relation to any input symbol
of the machine.

Finite state time machine models a time-driven device, which advances time
with a fixed increment of ε time units. After each such increment the values of
timers and the machine state are updated as described by the transition function.
The device responds to a timed sequence of input symbols a1, . . . , aj, . . . that
occur at time ϑ1, . . . , ϑj , . . . [2]. The flow of time within the input sequence is
not synchronized to ε-increments of the machine. This means that a finite state
time machine may or may not capture a symbol aj of a timed input sequence,
if ϑj+1 − ϑj < ε.

3.2 Examples

Example 1. Consider a train-detecting sensor [5] that signals ‘a’ if a train is
approaching, ‘b’ if not, and ‘Error’ if a failure of the device has been detected.
The sensor can stutter for a time Δt after a train has passed the sensor. The
control system is expected to filter the stuttering and to react on the ‘Error’
signal immediately.

The behavior of the required system can be described precisely using an au-
tomaton that could measure time (Fig. 2). The automaton starts in state N and
reads the input. If the train approaches, the input reads ‘a’ and the automaton
moves to state A. Now the input can stutter, but the automaton does not react
to signal ‘b’, until it has continued to be in state A at least through the period
Δt. Afterwards, if ‘b’ still holds, the automaton returns back to state N and
continues as before. If the input reads ‘Error’, the automaton moves to state X .
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Fig. 2. Filtering device with detection of errors

The notation in Fig. 2 shows that a transition can be enabled by a combination
of an input symbol and a timer symbol.

Formal definition of the filtering device can be written as follows:

S = {N, A, X}
Σ = {a, b, Error}
Ω = {no approach, approach, don’t know}
Γ = {t}
τ : τ(t) = ({A}, Δt)
δ : δ(N, a, φ) = A δ(N, b, φ) = N δ(N, Error, φ) = X

δ(A, a, φ) = A δ(A, b, φ) = A δ(A, Error, φ) = X
δ(A, a, {t}) = A δ(A, b, {t}) = N δ(A, Error, {t}) = X
δ(X, a, φ) = X δ(X, b, φ) = X δ(A, Error, φ) = X

s0 = N
ω : ω(N) = no approach ω(A) = approach ω(X) = don’t know

The granularity of time ε defines the responsiveness of the system. The re-
sponse on the output to a change of the input signal cannot be guaranteed
earlier than after time ε. The length of the acceptable delay has not been de-
fined in [5].

Example 2. Consider a timed automaton [2], which measures time using two
clocks: t1, t2 (Fig. 3). Clock t1 is reset and starts measuring time when the
automaton moves from s0 to s1 reading input a. A check (t̃1 < 1) in state s2
allows for a transition from s2 to s3 only within 1 time unit after processing a.
A similar mechanism of starting clock t2 while reading b and checking its value
while reading d ensures that the delay between b and the transition from s3 to
s0 is always greater than 2.

Fig. 3. Timed automaton
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A definition of the equivalent finite state time machine can be the following:

S = {s0, s1, s2, s3}
Σ = {a, b, c, d}
Γ = {t1, t2}
τ : τ(t1) = ({s1, s2}, 1) τ(t2) = ({s2, s3}, 2)
δ : δ(s0, a, φ) = s1 δ(s0, ξ, φ) = s0 for all ξ ∈ {b, c, d}

δ(s1, b, Θ) = s2 δ(s1, ξ, Θ) = s1 for all Θ ⊆ {t1}, ξ ∈ {a, c, d}
δ(s2, c, φ) = s3 δ(s2, c, {t2}) = s3
δ(s2, c, {t1}) = s2 δ(s2, c, {t1, t2}) = s2

δ(s2, ξ, Θ) = s2 for all Θ ⊆ {t1, t2}, ξ ∈ {a, b, d}
δ(s3, d, φ) = s3 δ(s3, d, {t2}) = s0

δ(s3, ξ, Θ) = s3 for all Θ ⊆ {t2}, ξ ∈ {a, c, d}
s0 = S0
ε = 1

Output elements Ω, ω do not exist in timed automata and can be defined
arbitrarily.

4 Program Generation

PLC controller is a device that cooperates with its environment through a set
of input and output signals. The controller executes in a loop, which begins
with polling the inputs and ends up with setting the output signals. What can
be observed from the outside of the controller is a sequence of output signals,
yielded in response to a sequence of the input signals. Cyclic execution of a
controller can be described in a pseudo-code, which creates a reference model
for PLC execution:

state = initial state();
loop forever {

input = poll the input();
timers = set timers(state,active timers());
state = next state(state,timers,input);
output = count output(state);
set the output(output);

}

The operating system of a PLC controls the flow of time and executes the
following actions:

– sets the initial state (initial state),
– executes the loop (loop forever),
– sets the output (set the output) and polls the input (poll the input) just

between the two consecutive loop cycles,
– controls time flow and sets the expired timers (set timers).



Translatable Finite State Time Machine 125

What the programmer must do is to write a code for:

– selecting the active timers (active timers),
– calculating the next state of the controller (next state),
– calculating the output (count output).

4.1 Defining a Finite State Time Machine for an UML Statechart

The required behavior of a PLC program is defined by means of a hierarchical
statechart (Sect. 2). The hierarchy of states can be described as a pair H =
(Sc, h) where:

Sc is a finite set of states of the statechart,
h : Sc → 2Sc is a partial function, such that:

(∃sc0 ∈ Sc)(∀sc ∈ Sc)[sc0 /∈ h(sc)] – there exists a root of the hierarchy,
(∀sc 
= sc0)(∃sc′ ∈ Sc)[sc ∈ h(sc′)] – each but root state has a super-state,
(∀sc, sc′ ∈ Sc)[h(sc) ∩ h(sc′) = φ] – the sets of sub-states are disjoint,

It can be proved that a hierarchy of states H is a directed tree graph. Function
h assigns a set of sub-states to each super-state. The root state sc0 of the tree
encircles the entire hierarchy and usually is not shown in the graphical diagram
of a statechart. The set of leaves of the tree can be defined as:

L = {sc ∈ Sc : h(sc) = φ}

A compound state s of the hierarchy is a partial function, defined for each sc /∈ L:

s : Sc → Sc such that: (∀sc /∈ L)[s(sc) ∈ h(sc)]

It can be proved that for each compound state s ∈ Sc there exists only one
path P s = sc0 . . . scn from the root state to a leaf state such that sci ∈ h(sci−1)
for i = 1 . . . n. Path P s will be called an active path in s, and the leaf state at
the end of P s will be called an active state, denoted sc(s).

The hierarchy of states is coded into the states of bits (flip-flops) inside the
PLC controller. The coding algorithm traverses the hierarchy in a top-down
manner and assigns a separate group of bits to code the sub-states of each
super-state. The result is a vector of bits, capable of storing all possible values
of function s. A valuation of bits within this vector represents a compound state
s of the hierarchy. Each such valuation is also a state s of the equivalent “flat”
finite state time machine. This way the set S of states of the finite state time
machine consists of all compound states of the hierarchy.

For example, only one bit is needed at the highest level of the hierarchy in
Fig. 1 to distinguish the states A and B, one additional bit to code the sub-states
A1 and A2 that are nested within the state A and another two bits to code the
sub-states B1, B2 and B3 within the state B. Such a 4-bit coding covers all
the possible states within the hierarchical state diagram. At the same time each
particular combination of the four bits defines an individual state of a “flat”
finite state time machine.
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The other elements of a finite state time machine A = (S, Σ, Γ, τ, δ, s0, ε, Ω, ω)
are defined in the following way:

– the set of input symbols Σ corresponds to the set of events that are assigned
to transitions within the UML state diagram,

– the set of timers Γ corresponds to the set of time events within the statechart
and the timer function τ is derived from the definitions of those time events,

– transition function δ captures all the transitions defined within the UML
statechart in such a way that:
1. Each transition of a statechart from a state sc ∈ Sc adds to the domain

of function δ one element for each leaf state sci that is nested at an
arbitrary level within this state sc; each such element is a triple (s, a, Θ),
in which s ∈ S has the active state sc(s) = sci.

2. The value of function δ for such an element is a new state s′ ∈ S such
that the active state in path P s′

is the initial state s0(sc′) of the target,
if the target is a state sc′ ∈ Sc, or is a sub-state s(sc′) of the target, if
the target is a history indicator within a state sc′.

– the state s0 is the coded initial state of the UML statechart,
– the set of output symbols Ω and the output function are derived from actions

that are defined within the UML statechart.

Granularity of time ε is the only element that must explicitly be added to the
model, as UML state diagram is not of discrete type. However, as pointed out
in Sect. 3.1, granularity of time defines a constraint for the timing within the
timed input sequence, which is generated by the environment.

4.2 Mapping of a Finite State Time Machine into a PLC Program

The semantics of a PLC program, i.e. the meaning within its application domain,
is a mapping, which converts a sequence of input signals into a sequence of output
signals. If we establish a mapping between the input signals of a PLC and the
input symbols of a finite state time machine, and another mapping between the
output signals of a PLC and the output symbols of a machine, we can think
about a finite state time machine as of a model of a PLC program.

The behavior of a PLC program is defined formally within the reference model
by the semantics of its programming language, which may be one of the IEC 1131
languages [9], e.g. ladder diagram or structured text. The behavior of a finite
state time machine has also been defined formally in Sect. 3.1 . By that means
a method for translating a high level abstract model of finite state time ma-
chine (S, Σ, Γ, τ, δ, s0, ε, Ω, ω) into a PLC program can formally be defined. The
method consists of the following steps:

1. Mapping of sets S, Γ, Σ, Ω into states, timers, input signals and output sig-
nals of a PLC.

2. Defining function active timers consistently with function τ .
3. Defining function next state consistently with function δ.
4. Defining function count output consistently with function ω.
5. Code generation.
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The mappings of sets S, Γ, Σ, Ω into states, timers, input signals and output
signals of a PLC can be arbitrary one-to-one mappings.

5 Case Study

A bottling line (Fig. 4) consists of a bottle supply with a gate, a conveyor system,
a scale platform and a bottle-filling pipe with a valve. Bottles to be filled are
drawn one by one from the supply of bottles and moved to the scale platform
by the conveyor. As soon as the bottle is at required position, a contact sensor
attached to the platform is depressed and the bottle-filling valve is opened. The
scale platform measures the weight of the bottle with its contents. When the
bottle is full, the bottle-filling valve is shut off, and an operator manually removes
the bottle from the line. Removing the bottle releases the contact sensor, and
the entire cycle repeats automatically.

Fig. 4. Bottling line

The current line status is described by a set of two-state signals issued by the
plant sensors and switches:

S start the line: A manual signal that enables the repetitive line operation;
P suspend the line: A manual signal that suspends temporarily the bottling

process;
R bottle ready: A signal from the electrical contact of the platform sensor;
F bottle full: A signal issued by the scale.

The controller reads the current line status and yields the three control signals:

G open the gate of the bottle supply (a pulse signal of the length Δt1);
T start the conveyor;
Z open the bottle-filling valve.

There are three different modes of control of the bottling line: Working (reg-
ular line operation), Blocked (when something went wrong) and Suspended (a
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Fig. 5. Optimized state diagram of a bottling-line

maintenance mode). Particular modes of control are modeled as states of a stat-
echart (Fig. 5). Working mode is a super-state, which has four sub-states nested
that correspond to the particular phases of the bottling line operation.

The process of building the requirements specification, safety analysis and the
optimization of the model, is described and discussed in detail in [8,16].

5.1 Finite State Time Machine

A selected coding for states and output signals is shown in Table 1. There are six
states at the lowest level of nesting shown explicitly in Fig. 5 and listed in Table 1.
However, the history indicator adds an additional implicit memory of the former
sub-states of the state Working that are to be re-entered from Suspended. Hence,
there are in fact four sub-states nested in the state Suspended that correspond
to sub-states of the state Working.

Table 1. The coding of states (flip-flops: M1, M2, M3, M4, output signals T, G, Z)

M1 M2 M3 M4 Bottling line state T G Z

0 0 Blocked 0 0 0

1 0 0 0 Stopped 0 0 0
1 0 0 1 Gate Open 1 1 0
1 0 1 1 Moving 1 0 0
1 0 1 0 Bottle Filling 0 0 1

1 1 ∗ ∗ Suspended 0 0 0

Finally, there are nine states, sixteen input symbols, three output symbols
and two timers in the finite state time machine, which defines the semantics of
the state diagram in Fig. 5. These sets together with the timer function and the
transition function are defined below:
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S = {Blocked, Stopped, GateOpen, Moving, BottleFilling,Suspended-Stopped,
Suspended-Open, Suspended-Moving, Suspended-Filling}

Σ ={S · P · R · F, S · P · R · F , S · P · R · F, S · P · R · F , . . . , S · P · R · F}
Γ ={t1, t2}
τ : τ(t1) = ({GateOpen}, Δt1)

τ(t2) = ({BottleFilling}, Δt2)
δ : δ(Blocked, S, φ) =Stopped

δ(Stopped, P, φ) =Suspended-Stopped
δ(Stopped, S · P · R, φ) =GateOpen
δ(GateOpen, P, φ) =Suspended-Open
δ(GateOpen, P, {t1}) =Suspended-Open
δ(GateOpen, P , {t1}) =Moving
δ(Moving , P, φ) =Suspended-Moving
δ(Moving , P · R, φ) =BottleFilling
δ((BottleFilling , P, φ) =Suspended-Filling
δ(BottleFilling , P, {t2}) =Suspended-Filling
δ(BottleFilling , P · R · F, φ) = Stopped
δ(BottleFilling , P · R, φ) =Blocked
δ(BottleFilling , P , {t2}) =Blocked
δ(Suspended-Stopped, P , φ) =Stopped
δ(Suspended-Open, P , φ) =GateOpen
δ(Suspended-Moving , P , φ) =Moving
δ(Suspended-Filling , P , φ) =BottleFilling

In all other cases δ(s, a) = s and δ(s, a, Θ) = s. These transitions are not
shown in Fig. 5. The usual Boolean notation for the subsets of input symbols is
used in the above definition of the function δ, e.g.: S · P · R represents the set
{S · P · R · F, S · P · R · F}.

5.2 Program Generation

Each timer symbol of a finite state time machine is implemented within a PLC
controller by a separate timer block of a ladder diagram. A Boolean condition
that sets a timer depends on the coding of this state, which is assigned to the
timer by the timer function τ . For example, the conditions to set timers t1 and
t2 are the following:

(a1) Set t1 = M1 · M2 · M3 · M4
(a2) Set t2 = M1 · M2 · M3 · M4

The transition function of a finite state time machine defines conditions to
set or reset flip-flops. It is implemented by a sequence of Boolean expressions
that depend on the coding of states, input signals, timers, and the definition
of function δ. A complete sequence of Boolean expressions that implement the
transition function is as follows:
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(b1) Set M11 = S · M1 · M2
(b2) Set M12 = P · M1 · M2
(b3) Set M13 = P · t1 · M1 · M2 · M3 · M4
(b4) Set M14 = S · P · R · M1 · M2 · M3 · M4
(b5) Res M11 = (P · R + P · t2) · M1 · M2 · M3 · M4
(b6) Res M12 = P · M1 · M2
(b7) Res M13 = P · R · F · M1 · M2 · M3 · M4 + S · M1 · M2
(b8) Res M14 = P · R · M1 · M2 · M3 · M4 + S · M1 · M2
...................................................
(c1) M1 = M11
(c2) M2 = M12
(c3) M3 = M13
(c4) M4 = M14

The expressions to set timers are placed in the sequence before the expressions
that implement the transition function. This way the values of timers are updated
as soon as possible after entering a new state. Moreover, they are stable during
the entire program execution cycle.

Output function defines conditions to set or reset the output signals in relation
to the current state of the finite state time machine. A sequence of Boolean
expressions that implement the output function can be defined as follows:

(d1) G = M1 · M2 · M3 · M4
(d2) Z = M1 · M2 · M3 · M4
(d3) T = M1 · M2 · M3 · M4 + M1 · M2 · M3 · M4 = M1 · M2 · M4

Fig. 6. A part of the program for a bottling line controller
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The sequence (a1) . . . (d3) of Boolean expressions, generated by an automatic
tool from a statechart, or a set of statecharts, defines in all detail a program for
a PLC. Such a program can be expressed in the language of a ladder diagram
or an instruction list [9,17].

Each expression is converted into a single line of the ladder. Disjunction of
terms is represented by parallel branches within the line, while conjunction of
symbols is represented by serial connection of elements within a given branch.
Negation of an argument is implemented by a normally closed contact. Each
timer symbol is implemented by a separate timer provided by the language. A
part of the program for a bottling-plant controller is shown in Fig. 6.

Finite state time machine can also be implemented using a procedural lan-
guage, e.g. C. A description of such a conversion is outside the scope of this
paper.

6 Conclusions

This paper describes an original extension to Moore automata, which is aimed
at the modeling of time. The extended model is translatable, and can be used
as a basis for automatic code generation. The paper describes a formal defini-
tion of a finite state time machine and a method for building the implemen-
tation. The application of the model and the method is illustrated by a case
study of a bottling line controller. The advantages of the method are: Formal-
ity, simplicity, ability of automatic code generation and the potential for formal
analysis.

A disadvantage is complexity that results from exponential growth of the sets
of input symbols and states. However, the concept of input symbol helps in mak-
ing the specification unambiguous, and the concepts of hierarchical state diagram
and history indicator make part of the state space invisible to the modeler. The
full size of the state space appears only at the level of a finite state time machine.
Appropriate representation can make automatic verification of systems of 1020

states feasible [18].
The method described in this paper has been devised mainly for didactic

purposes and has been extensively used within the control systems lab in order
to implement programs for PLC controllers. The experience is such that the
method helps the students in bridging the gap between their math knowledge
and C programming skills at one side, and the reality of industrial control at
the other. The first version of a tool for automatic program generation (ladder
diagram for PLC) is currently being tested.

The plans for future work are aimed at extending the model towards concur-
rent operations that are allowed in the UML-based statecharts. Moreover, we
are working on methods of model verification, preferably using UPPAAL model
checker [19].

The size of code generated in procedural languages and the accuracy of time
in generated code are open problems that are still waiting for research.
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Abstract. The Use Case Map (UCM) notation enables the use of graph-
ical scenarios to model grey-box views of a system’s operational require-
ments and behaviour, in context. The scenario traversal mechanism is
the most popular UCM analysis technique but its current tool support
in UCMNav is limited and hard to use, and the high coupling of its fea-
tures makes it difficult to maintain and evolve. This paper presents major
enhancements to the recent jUCMNav Eclipse plugin consisting of a new
scenario traversal semantics accompanied by enhanced trace transfor-
mations to Message Sequence Charts. In addition, this paper identifies a
set of semantic variation points which lay the groundwork for notational
clarifications and user-defined semantic profiles.

1 Introduction

The Use Case Map (UCM) notation [5] is a part of the proposal for ITU-T’s
User Requirements Notation (URN) [1,10]. UCMs visually model operational sce-
narios cutting through a system’s component structure, providing a high-level,
grey-box view of system behaviour in context. Because of their visual nature and
apparent simplicity, UCMs are quickly understood by many stakeholders. Fur-
thermore, UCMs are useful in various development phases such as requirements
modelling and analysis, test case generation, performance modeling, and business
process modelling, and this in numerous application domains1.

Among the techniques used to analyze and transform UCM models, the sce-
nario traversal mechanism is likely the most popular and best supported one.
This mechanism essentially provides an operational semantics for UCMs based
on an execution environment. By providing an initial context, called scenario def-
inition, the traversal mechanism determines which scenario paths of the UCM
model will be followed, until no progress is possible. There are many typical
applications of such traversal semantics, including:

– Model understanding and scenario visualization: Complex UCM
models involve many paths and diagrams that invoke one another. The
traversal can highlight which scenario paths are followed in a given context
(e.g., see Figs. 1 and 2). In addition, the traversed paths can be visualized
in a linear form, e.g. by transforming them to Message Sequence Charts

1 The UCM Virtual Library, http://www.UseCaseMaps.org/pub/, contains a collec-
tion of over 140 papers and theses illustrating these topics.

E. Gaudin, E. Najm, and R. Reed (Eds.): SDL 2007, LNCS 4745, pp. 133–149, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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(MSC) [9], hence avoiding the need to flip back and forth through many
diagrams.

– Model analysis: Scenario definitions act like test cases for the UCM model
itself and enable the detection of unexpected behaviour (deadlocks, races,
interactions, etc.) as well as the regression testing of evolving models.

– Test goal generation: Once validated, the scenarios extracted via the
traversal mechanism can serve as a basis for design/implementation-level
test goals, e.g., in MSC, UCM sequence diagrams, or TTCN-3 format.

– MDA-like transformations: The traversal mechanism can use platform-
dependent information sources on top of UCM models and scenario defini-
tions in order to generate partial design models (e.g., in MSC or UML).

UCMNav is a UCM modelling, analysis, and transformation tool developed
over the past decade. Though it includes a scenario traversal mechanism [2,3] and
transformation procedures to various target languages (including MSCs [13]), it
suffers from major limitations and usability, extensibility, and maintainability
issues. jUCMNav, its Eclipse-based successor, is a complete re-implementation
of the modelling tool which now supports URN in its entirety, i.e. UCM combined
with the Goal-oriented Requirements Language (GRL) [16].

This paper introduces major analysis enhancements to jUCMNav by provid-
ing an extensible scenario traversal mechanism accompanied by trace transfor-
mations to MSCs. The new scenario traversal engine supports a more complex
data model in addition to being designed for extensibility. Furthermore, this
paper identifies a set of semantic variation points for which the behaviour is un-
clear in UCMs as well as potential alignment with common workflow patterns,
laying the groundwork for notational clarifications and user-defined semantic
profiles.

Section 2 introduces an example UCM model featuring an active scenario,
setting the stage for the introduction of the new scenario traversal semantics in
Section 3. Section 4 describes the new scenario traversal listener infrastructure
which is used by the three-step MSC generation algorithm. Section 5 discusses
related work and summarizes UCM semantic variation points; clearing up se-
mantic issues is a necessary step towards future enhancements to the notation
and jUCMNav. Section 6 finally presents conclusions and future work.

2 An Example Use Case Map Model with Scenarios

An example is used here to illustrate parts of the UCM notation and typical
usage. It also emphasizes some of the complexities of the traversal mechanism
and limitations of the current UCM notation. The interested reader can access
more comprehensive tutorial material online2. Although the scenario traversal
mechanism is only explained in Section 3, note that both figures in this section
highlight a particular scenario in a different color (i.e., the active scenario).
2 See http://www.UseCaseMaps.org and http://jucmnav.softwareengineering.ca/
twiki/bin/view/ProjetSEG/JUCMNavTutorials
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Our sample UCM model describes an online e-commerce front-end to a ware-
house selling physical products. The company’s business processes do not allow
it to show real-time product availability on its website; because this process is
manual, an unfortunate web customer can order a product that is not available
in the warehouse. Should this occur, the web store will inform the user that his
order includes back-ordered products. Consequently, the user will either decide
to wait for the product to become available, cancel the back-ordered items, or
cancel the order completely.

Fig. 1. Example Use Case Map with an active scenario

Fig. 1 describes the top level process which can be read from the start points
(filled circles) following the paths until end points (bars) are reached. Along the
way, various path elements are encountered such as responsibilities (shown as
X’s), Or-forks (mutually exclusive alternatives), Or-joins (path merging), and
stubs (diamonds). Condition labels on alternatives and pre/post-conditions are
shown between square brackets (the logical conditions themselves are formalized
using a data model). Stubs contain sub-maps (called plugins) and can either be
static or dynamic (dotted outline). The former contains only one plugin whereas
the latter offers different possibilities and the one that is used is selected by the
traversal engine depending on the stub’s selection policy.

Fig. 2 describes the Wait for Order plugin map and illustrates a few other
UCM constructs. The And-fork introduces the concept of concurrency in Use
Case Maps and its counterpart (not used here), the And-join is used for syn-
chronizing paths. Fork and joins can be used independently and do not need
to be well nested. Looping paths are also allowed. Another way to model syn-
chronization in UCMs, which we use here, is to make use of the waiting place
(filled circle on path) or the timer (clock icon). Although both path nodes block
until a connected path arrives, the timeout has the added capability of following
a timeout path (zigzag symbol) if the connected path never arrives. Section 5
will provide insights on how the UCM notation could be enhanced with addi-
tional workflow patterns to improve the readability and precision of this plugin
map.
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Fig. 2. Wait for Order plugin map

Conceptually, our example scenario highlights the primary use case where the
customer orders items which are in stock. The warehouse employee receives the
order, gathers the products and ships them off to the customer.

In [2,3,13], scenario definitions are composed of a list of start points that are
triggered in a given context (a set of variable initializations), and possibly with
post-conditions required to be fulfilled at the end of the execution. Responsi-
bilities are allowed to change the values of the variables. Once executed, the
traversal results are visualized as a coloured path over the original UCM.

The UCMNav implementation of this mechanism suffers from many limita-
tions. The only data type allowed is Boolean. Conditions and assignments are
described using a very simple action language with a non-standard syntax. The
same start points cannot be triggered multiple times. Scenario definitions are
not reusable, leading to scalability and management issues. The traversal is com-
bined with a trace linearization algorithm (for MSC generation) that is prone to
errors; hence it is difficult to debug and maintain. The traversal is rigid, with-
out semantic variation points and without tolerance for errors (it often blocks if
something unexpected happens or is not initialized properly). Only one scenario
can be run at a time. Finally, UCMNav has a dependency on external tools for
MSC generation (e.g., UCMExporter [3]) and visualization (e.g., Telelogic Tau),
hence hindering usability. The following sections will address these issues and
discuss the new solution implemented in jUCMNav.

3 New Traversal Semantics

3.1 Data Model and Operators

This section describes the data model and operators now available in jUCMNav.
jUCMNav supports Boolean variables, integer variables, and variables of user-
defined enumeration types whereas UCMNav only supported Boolean variables.
All variables are global in scope, which is more appropriate for requirements
(targeted by URN) than implementation. jUCMNav supports more operators
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to work with these data types and although they remain very simple, the set
supported by jUCMNav greatly improves expressiveness for conditions:

– Integers {..., -2, -1, 0, 1, 2, ...}: Support for comparison (equals, not
equals, greater than, less than, greater or equal to, less or equal to) and
arithmetic operators (additive inverse, addition, subtraction, multiplication);

– Booleans {true, false}: Support for comparison (equals, not equals) and
logical (not, and, or, xor, implies) operators;

– User-defined enumerations { {INITIAL, ACTIVE}, ... }: Support
for definition and for comparison (equals, not equals) operators.

The concrete grammar is omitted here for simplicity but it should be noted
that it does support the SDL syntax for these data types and operators3. The
action language used to modify variables in responsibilities supports assign-
ments and if-else statements on top of the operators listed above. The pseudo-
code parser was automatically generated from a grammar in Backus-Naur Form
(BNF) using JavaCC/JJTree [11]. Integers were not added with the intension of
supporting complex mathematical computations; their main use in UCMs is to
better support loop constructs which were previously represented using compli-
cated sets of Boolean variables. As for enumerations, they are well adapted to
Or-forks or stub selection conditions that have multiple possible branches.

3.2 Metamodel Enhancements

The URN metamodel (implemented in jUCMNav [16]) was enhanced to support
scenario definitions. The relevant portion is presented as a class diagram in
Fig. 3. A UCM model can contain a set of scenario groups which, in turn, contain
scenario definitions. A particular scenario definition is represented as:

– An ordered list of scenario start points, where duplications are allowed;
– A set of variable initializations;
– A set of scenario post-conditions (logical conditions expressed using the lan-

guage described in the previous section);
– A set of scenario preconditions;
– An ordered list of scenario end points that must be reached during execution;
– An ordered list of included scenarios (for reusability and management).

Only the first three of these elements were supported in UCMNav. Our con-
tribution to this model is the support of additional elements that make UCM
scenarios closer to test cases. The UCM modeller can now define where the
traversal should end, to facilitate model verification. Furthermore, scenario in-
clusion now allows a modeller to reuse existing scenario definitions and in-
crementally build the test suite. In particular, default variable initializations
can be defined in one central location and overridden if necessary in including
scenarios. This is also useful when new variables are added to an evolving UCM
model.

3 See http://jucmnav.softwareengineering.ca/twiki/bin/view/ProjetSEG/HelpOnLine
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All preconditions, post-conditions, start points, and end points are also included
but cannot be overridden in the parent scenario: the union of these elements is
always executed before the parent scenario’s elements.

3.3 Architecture and Algorithm Overview

This section presents the scenario traversal engine’s high-level architecture and
algorithms. jUCMNav provides a default semantic interpretation of the various
constructs according to common understanding and the draft standard, but as
will be presented in Section 5, there are many issues that are up for clarification.

Fig. 4. Default Scenario Traversal

The default scenario traversal algorithm is architecturally separated in two:
DefaultScenarioTraversal and DefaultScenarioTraversalDataStructure, as shown in
the UCM of Fig. 4. The former defines the flow of control in the traversal al-
gorithm and how each UCM path node should be processed, according to the
default semantics of each path node. The latter encapsulates data structures
such as the stack of path nodes that have to be processed and the waiting list (a
queue of path nodes that cannot be processed at this time). By using a stack and
a blocked node list, one defines a depth-first traversal algorithm. A breadth-first
implementation could be trivially added by simply changing the stack to a queue
inside the DefaultScenarioTraversalDataStructure.

The core of the traversal engine is represented here as the process node dy-
namic stub. Each path node is treated differently according to its type, related
node connections, and related conditions. Section 5 will detail the ones that are
particularly challenging. The traversal engine’s second most important respon-
sibility is to decide on the path node that should be executed next, which is
defined in the getNextVisit stub and refined by the plugin map shown in Fig. 5.

The default scenario traversal data structure uses a node stack and a wait-
ing list internally: this depth first behaviour respects the general traversal be-
haviour presented in [2] that was implemented in UCMNav. Because concurrency
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Fig. 5. Get Next Visit plugin map

is involved, it does keep track of pseudo-threads but the implementation itself
remains single-threaded. As maintainability is one of the goals of this implemen-
tation, simplicity is key and multi-threading is left as future work.

jUCMNav’s infrastructure opens the door for the creation of new algorithms
by any modeller: our scenario traversal framework uses a low coupling strat-
egy and the chain of responsibility design pattern [7], enabling tool builders to
override the default traversal algorithm via a plugin to jUCMNav.

3.4 Validation Methodology

To validate the correctness of the implementation, jUCMNav’s set of unit tests
was augmented significantly. For the parser aspects only, over one hundred tests
were created, to verify the correctness of the BNF grammar given to the parser
generator. Furthermore, another fifty tests that make use of the new scenario
features were created to cover the base traversal cases. The automated tests
focus on the low-level aspects of the scenario generation, for the most part.
As for checking the high-level behaviour, the MSC export plugin presented in
Section 4 was used for that purpose. Although primarily implemented as a way
to visualize scenario execution using a widespread notation, the exported files
provide a manual mechanism to double-check scenario traversals.

4 New Scenario Export Mechanism

4.1 Scenario Metamodel and Existing Tool Support

The generation of MSCs from jUCMNav execution traces has been planned since
its inception. In parallel to jUCMNav’s creation, initiated two years ago, a team
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of undergraduate students created an Eclipse-based MSC Viewer that reads the
scenario files generated by the old UCMNav and converted by a filter called
UCMExporter [3]. This is no longer necessary with jUCMNav, which uses the
MSC Viewer metamodel to describe the result of traversals.

jUCMNav exports the XML serialization of the metamodel depicted in Figs. 6
and 7 using the Eclipse Modeling Framework (EMF) [6]. The metamodel is heav-
ily inspired by the XML DTD used by UCMExporter [3]. It contains concepts for
groups of scenarios, component definitions and instances, and events, conditions,
and messages ordered in sequences or in parallel (no choice as alternatives are
resolved by the traversal semantics). The different types of events correspond to
UCM path nodes traversed during execution.

jUCMNav creates a model instance using the information collected during a
scenario traversal and serializes the result to a file. Working on this instance,
another tool could generate an MSC (for use in Telelogic Tau, for example),
UML sequence diagrams or TTCN-3 test skeletons.

4.2 Architecture and Algorithm Highlights

The transformation of UCM scenario execution traces to MSCs is implemented
as a jUCMNav export plugin (available via Eclipse’s standard Export menu).
The export mechanism creates a .jucmscenarios file, which can be loaded by
the MSC viewer. The MSC generator itself is implemented as a simple listener to
the scenario traversal algorithm. This approach decouples the traversal from the
export mechanism which in turn increases the maintainability of the application
as a whole; a vast improvement over the older tools.

Simply put, the export plugin executes selected UCM scenario definitions
with the MSC generator listening to the various notifications and iteratively
building the scenarios. Generating an instance of the ScenarioSpec metamodel
from the scenario traversal is actually a three-step process, which cleverly reuses
jUCMNav’s internal structure and scenario traversal mechanism: 1) generate a
flat UCM while traversing; 2) make it well-formed; 3) export XML scenario.

First, the traversal listener generates a new URN model that represents a
flat view of the scenario execution (a partial order without any Or-forks, Or-
joins, or stubs). jUCMNav’s auto-layout feature can be used to render the UCM
diagram. This greatly improves debugging capabilities and this transformation
has become a feature in its own right.

Algorithmically, the flatting process maps incoming notifications to the cre-
ation of a particular element in the target map. By reusing the same internal
commands used by the UCM editor when a user builds a diagram, the new
targetdiagram is thus syntactically valid. Each executed scenario is represented
in its own map and the original scenario definitions are cloned and can be re-
executed verbatim on the generated URN model. An example of such a flat
scenario, generated from our example model, can be seen in Fig. 8 (left).

Second, the generated URN model is checked for well-nestedness according
to the definition in [2]. If it is not well-nested (e.g., left part of Fig. 8), the
model is transformed and additional concurrency constraints are imposed to
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Fig. 6. Exported UCM scenario metamodel (1/2)

ensure that it can be expressed in a linear form (such as an MSC or UML se-
quence diagram). One well-nested version of this scenario can be seen in Fig. 8
(right). Here, the direction arrows carrying plugin traversal events (as meta-
data) are constrained to be executed after process order to make the result
well-nested.

Third, the ScenarioSpec instance is built by traversing the well-nested URN
model. The main complexity here is the synthesis of synchronization messages
necessary to ensure causality across multiple instances. The inferred messages
are based on the techniques presented in [3]. Additional simplifications were
possible in our implementation due to a less restrictive architecture (UCM-
Exporter was implemented as XML transformations) and because jUCMNav’s
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Fig. 7. Exported UCM scenario metamodel (2/2) - Model elements

Fig. 8. Flattened scenario and its well-nested version

query framework was reused. This output can then be visualized in the MSC
Viewer that is packaged with jUCMNav, as seen in Fig. 9.

In this transformation, UCM components are converted to MSC instances,
UCM start/end points to self messages, UCM responsibilities to MSC actions,
UCM timers to MSC timer set/reset/timeout events, and UCM conditions to
MSC conditions. Explicit UCM concurrency (And-forks) is shown using MSC par
inline statements. The inter-instance messages are synthesized to preserve the
UCM causality, and names are created automatically according to the context.
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Fig. 9. Message Sequence Chart exported from Fig. 8

5 Discussion

5.1 Return on Contributions

Most of UCMNav’s limitations presented in Section 2 and related to the previous
work in [2,3,13] have been addressed in our extension to jUCMNav. More com-
plex and usable data types are available, together with an action language whose
concrete syntax is compatible with SDL. Scenario definitions now supportpost-
conditions, expected end points, and start points that can be triggered multiple
times. Scenarios can be included in other scenarios, hence improving manage-
ment and scalability. Visual scenario highlight is supported; traversed paths and
elements are shown in a different colour and offer a hit count indicating the num-
ber of times they were traversed. Multiple scenarios can be executed, enabling
coverage analysis of a set of test scenarios. The traversal, linearization, and MSC
generation are entirely decoupled, and intermediate UCM representations (with
scenarios) can be exported, enabling other types of analysis and transformations.
The traversal can be guided by user preferences (e.g., for the required degree of
determinism at choice points), and the algorithms can be overridden by external
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plugins. Various errors and warnings are reported in the standard Eclipse way,
and double-clicking them brings the focus on the problematic model element.
jUCMNav also includes its own MSC viewer, which supports common features
such as zooming, scrolling, outlines, and diagram export.

5.2 Related Work

He et al. used MSCs generated from a UCM model to synthesize a SDL model
for a simple telephony application [8]. They recommended improvements to the
UCM traversal semantics and MSC generation that have been addressed here.
In particular, the synthetic message names generated for MSCs are used in a
consistent way across scenarios, the MSCs now include conditions expressing
the selection of plugin maps in dynamic stubs, and the UCM notation now
distinguishes between actors (environment) and system components.

UML 2.x activity diagrams share commonalities with UCMs and the type of
transformation discussed here could be applicable to the generation of sequence
diagrams from activity diagrams. Störrle surveyed several transformations from
activity diagrams to different semantic domains [17]. Some are done formally
using denotational semantics, some are informal by examples, and others (similar
to our approach) are done by algorithm/interpreter. Liang et al. surveyed other
synthesis approaches for different notations [12]. In contrast with many of these
approaches, ours handles path selection based on control variables of different
types, scenario models that are hierarchical and/or not well-formed, submodels
with multiple input/output segments, and complex component structures.

Bisgaard Lassen et al. proposed an approach to generate process descriptions
(at the level of UML activity diagrams, Petri Nets, YAWL, or BPEL) from
MSCs [4]. In essence, their transformation is the reverse of ours and could easily
be adapted to cover UCMs as a target notation. Combining both approaches
could enable a round-trip transformation process.

5.3 Analysis of Semantic Variation Points

During the traversal, many Use Case Map concepts could be interpreted in
different ways. The semantic variations listed in Table 1 are related to the typical
interpretation of the notation in its current form. Conceptually, the traversal
pushes tokens along UCM paths. Most of these semantic variation points have a
natural solution, often related to the initial implementation in UCMNav. Because
no variation points were documented, the implementation was not questioned or
re-evaluated. However, given jUCMNav’s extensibility and the availability of the
Eclipse environment (including the standard Problems view), more power can
be given to the modeller in terms of precisely defining the expected behaviour
and resulting warnings and errors.

The choices made by the default scenario traversal (Table 2) were mainly mo-
tivated by intuitiveness and simplicity of implementation; the hardest decisions
are related to leaving a plugin map while dealing with concurrency. jUCMNav
now supports user-defined preferences for several traversal semantic variations,
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Table 1. Identified semantic variations

and the door is opened to additional options in the formalization of the UCM
notation. Interestingly enough, a recent paper [14] evaluates the UCM notation
in terms of its expressiveness compared to other workflow notations. The paper
identifies a set of workflow patterns [18] that are not currently well-supported
by plain UCM constructs. Although many of these patterns can still be modeled
using a combination of constructs, they introduce contrived solutions such as
in Fig. 2. The relationships between these workflow patterns and the traversal
semantic variation points we identified are presented in Table 3.

In summary, there are three main modifications to the UCM notation and its
tooling to inherently support a wider breadth of workflow patterns, such as those
above. Because these changes are tightly coupled to the traversal algorithm, they
provide good insight on the semantic clarifications that are required in UCMs.

– First, two slight notational changes should be made to both Or-forks and
And-forks. Conditions should be added on the And-fork branches thus com-
bining the concepts of alternatives and concurrency; this would greatly sim-
plify Fig. 2. Such a feature would also cover non-exclusive Or-forks with
multiple true branches (semantic variation 2).

– Second, stubs and plugin bindings should be enhanced to support the exe-
cution of multiple concurrent plugins and synchronization. This would clear
up the main issues brought up by semantic variations 11 and 12 while at the
same time greatly increase the expressiveness of Use Case Maps.

– Finally, to properly support these workflow patterns and to clear up issues
concerning blocked elements (semantic variations 5, 6 and 8), modifications
should be made to the UCM traversal engine in order to support plugin and
component instances. Currently, each stub shares the same global plugin
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instance, which does have its benefits in terms of simplicity, but greatly
limits expressiveness. These changes may require variable instances local to
particular components and plugins, as well.

Table 2. Default scenario traversal choices

Table 3. Relationships between workflow patterns and semantic variations
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6 Conclusions and Future Work

Providing an operational traversal semantics for the UCM notation and enabling
transformations to MSCs present interesting challenges. In this paper, we have
re-engineered and greatly enhanced the pre-existing scenario traversal mecha-
nism, created a scenario traversal listener infrastructure, and identified relevant
semantic variation points that will have an impact on the future of the notation
and in particular on the traversal semantics. Our enhancements to the jUCMNav
tool represent an important step towards a feature-rich, usable, powerful, and
maintainable framework to support research and applications based on URN.

The first challenge we foresee is the implementation of the enhancements to
the UCM notation described in Section 5.3. By directly supporting a wider vari-
ety of workflow patterns, the notation’s expressiveness will be greatly enhanced.
Once UCM’s core is strengthened, the second challenge will be to reinforce
URN’s characteristic advantage in the niche of early requirement engineering
notations: integrated support of goals (via GRL) and scenarios (via UCM) in
one model [16]. Having the GRL goal model impact the scenario traversal mech-
anism (and vice versa) are forthcoming enhancements. Finally, aspect-oriented
extensions to URN have recently been proposed [15] and will likely benefit from
a good integration with the traversal semantics and MSC generation.
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17. Störrle, H.: Semantics of Control-Flow in UML 2.0 Activities. In: Bottoni, P.,
Hundhausen, C., Levialdi, S., Tortora, G. (eds.) VL/HCC. Proc. IEEE Symposium
on Visual Languages and Human-Centric Computing, Rome, Italy, pp. 235–242.
IEEE Computer Society, Los Alamitos (2004)

18. Workflow Patterns website (2007). http://www.workflowpatterns.com

 https://javacc.dev.java.net/doc/JJTree.html
http://www.workflowpatterns.com


Automated Generation of Micro Protocol

Descriptions from SDL Design Specifications

Ingmar Fliege and Reinhard Gotzhein

Computer Science Department, University of Kaiserslautern
Postfach 3049, D-67653 Kaiserslautern, Germany

{fliege,gotzhein}@informatik.uni-kl.de

Abstract. A micro protocol is a ready-to-use, self-contained, distribu-
ted component that supports structuring of complex communication sys-
tems, and reuse of well proven elementary communication solutions. Micro
protocol designs can be formally specified with SDL. For documentation
purposes and effective reuse, these SDL designs are augmented by further
description elements, for instance, typical scenarios capturing the micro
protocol service and the interaction of micro protocol entities. In this pa-
per, we show how these additional description elements can be generated
from an augmented micro protocol design specification. We have devised
a tool that creates a PDF file, containing the complete micro protocol de-
scription with graphical elements and a link to the SDL design specifica-
tion. Our approach enhances the maintenance of micro protocol libraries,
and supports the consistency of micro protocol description elements and
SDL designs.

1 Introduction

To master the development and maintenance of communication systems, struc-
turing and reuse both play a key role. Structuring is essential to controlling
complexity; reuse of well proven solutions is crucial to controlling quality and
productivity. In [10], we have introduced the structuring concept of micro pro-
tocol, a communication protocol that encapsulates a single functionality and
the required collaboration among micro protocol entities. Micro protocols are
ready-to-use, self-contained, distributed components that support both struc-
turing and reuse. They can be composed to form more complex protocols, and,
finally, functionally complete, tailored communication systems. In several case
studies [3,4,11], we have demonstrated the applicability of micro protocols.

A micro protocol can be defined operationally by specifying architecture, be-
haviour of protocol entities, and data formats such that functionality and re-
quired collaboration are covered. Following good practice in protocol engineering,
we model micro protocol entities as asynchronously communicating extended fi-
nite state machines. To specify and compose micro protocol entities, we use SDL
[6], ITU-T’s formal specification and description language. SDL directly supports
the specification of design components through SDL type definitions contained

E. Gaudin, E. Najm, and R. Reed (Eds.): SDL 2007, LNCS 4745, pp. 150–165, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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in SDL packages. Micro protocol entities are defined by specifying SDL block
types, process types, composite state types, and procedures.

For documentation purposes and effective reuse, we have augmented the micro
protocol design specification by further description elements:

– Name identifies a micro protocol. It refers to the essence of the design prob-
lem and its solution, thereby raising the vocabulary of the protocol engineer.

– Version identifies a unique state of the micro protocol description, corre-
sponding to the development history.

– Author identifies the protocol engineer responsible for this version of the
micro protocol description.

– Intent provides a short informal description of the micro protocol design
problem and its solution.

– Interface signature identifies micro protocol entities and their input and
output signatures.

– Interface behaviour defines scenarios of typical micro protocol entity
operation.

– Service defines typical scenarios of how this micro protocol interacts with its
environment.

– Architecture defines the protocol structure and connections between protocol
entities.

– Imported and exported definitions lists required and provided data types,
signal definitions, and agent types, together with syntactical reuse units (e.g.,
SDL packages).

– Cooperative usage describes the usage and composition of this micro protocol
with other micro protocols.

– Checklist is a list of assumptions that have to be satisfied for the protocol
to operate correctly.

These description elements capture design knowledge and support the selection
and composition of suitable micro protocols by the protocol engineer. Micro
protocol definitions comprising the additional description elements are archived
in a repository called micro protocol library. In [4], we have introduced a specific
development process for the design of communication systems based on micro
protocols.

In order to work effectively with micro protocols, all description elements
must be consistent with the SDL design. Experience shows that this causes
problems, especially if several versions of a micro protocol are to be maintained,
and if description elements are spread across several documents. In this paper
we propose to use only one document – the SDL design specification – and to
generate all remaining description elements by analysing this specification. We
show that if the SDL design is augmented with specific extra information, this
becomes feasible. We have devised a tool that creates a LATEX file, which is then
processed into a complete micro protocol description with graphical elements.

The rest of this paper is structured as follows. In Sect. 2, we show how the SDL
design of a micro protocol is augmented to generate the additional description el-
ements, and provide excerpts of the final output. In Sect. 3, we elaborate on the
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analysis algorithms that we have devised to generate typical scenarios capturing
the service of the micro protocol, and the operation of micro protocol entities. Sec-
tion 4 surveys related work, which is followed by conclusions and outlook in Sect. 5.

2 Micro Protocol Description Elements

In this section, we elaborate on the individual micro protocol description elements,
as listed in Sect. 1. The focus here is on the extra information needed by the tool
to generate these elements automatically from the SDL micro protocol design,
and the results of the generation process. In this section, we will revisit some of
the description elements and provide details of analysis algorithms involved. For
illustration, we show excerpts of a symmetrical, reduced version of the Initiator
Responder (InRes) protocol [4], which—due to its simplicity—can be described
as a micro protocol. A manual for the use of our tool, together with the complete
InRes example and the generated documentation, can be found in [2].

The tool presented in this paper generates LATEX sources. This has the advan-
tage that layout can be handled separately, and that diagrams can be created

Fig. 1. Tau integration

Fig. 2. Formal comments: version, author, intent
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from textual output. In the end, a PDF file, containing the complete micro
protocol description and a link to the SDL design specification is created.

We have also integrated our tool into the Telelogic Tau SDL Suite [13]. Fig. 1
shows a pull-down menu “ConTraST”, which we have added to access function-
ality of our SDL-to-C++ compiler [5]. The last entry in this menu starts the
generation of the micro protocol description.

2.1 Name, Version, Author, and Intent

The SDL design specification of a micro protocol, consisting of SDL type def-
initions, is collected into an SDL package. Micro protocol entities are defined
by SDL block types, process types, composite state types, and procedures. The
name of the SDL package is the name of the micro protocol, and used by the
tool. Unlike the name, the description elements author, version, and intent can
not be derived from the SDL design. Therefore, we provide extra information
inserted into the SDL design as comments with keywords. For author, version,
and intent, an example of such a comment is shown in Fig. 2. This comment is
inserted on top level, i. e., at package level, and triggers the generation of fur-
ther description elements. The tool extracts the comments from the SDL design
specification and produces the output shown in Fig. 3.

Fig. 3. Tool output: name, version, author, intent

Processing of SDL design specifications is done in several steps. First, a PR
file containing all comments is generated, using Telelogic TAU. This PR file is
then processed by the SDL parser of our code generator ConTraST [5], creating a
complete abstract syntax tree. We have extended this parser to preserve the extra
information provided by formal comments by adding corresponding attributes to
certain nodes of the syntax tree. Our tool for generating micro protocol description
elements analyses this syntax tree, and extracts all necessary information.

2.2 Interface Signature

The interface signature identifies, for each micro protocol entity type, the in-
coming and outgoing signals (directed arrows) and attaches them to gates (black
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Fig. 4. Tool output: interface signature

ovals) (see Fig. 4). Based on an analysis of the SDL design, a distinction between
signals exchanged with the service user (solid arrow lines) and signals exchanged
between protocol entities (dashed arrow lines) is drawn. In the InRes example,
all interaction with the service user is via gate su, whereas interaction between
protocol entities is via med.

In Fig. 4, the interface signature has been augmented by documentation about
used SDL design patterns [9]. In principle, this information can be derived if the
application of patterns is supported by the tool chain (for a tool prototype,
see [7]). In the current version of our tool, we add formal comments to indicate
pattern usage. In the example, the patterns AsynchronousNotification and
SynchronousInquiry are documented. This is indicated by filled and blank
arrow heads, respectively. In case of SynchronousInquiry, the possilbe replies
are listed after the slash. This shows how complementary reuse methodologies
can be integrated into a joint documentation.

2.3 Interface Behaviour

The interface behaviour is described by a set of local scenarios, one per state
and transition trigger, documented by message sequence charts (MSCs). Fig. 5
shows an elementary interface behaviour, consisting of the consumption of a
signal DIS req followed by the setting of a timer and the output of a signal CR.
Additionally, informal text describing the scenario is generated, which can be
generic and/or customized by formal comments in the SDL design specification.

If a transition is more complex, containing, e.g., decisions, loops, and connec-
tors, MSCs with inline expressions are generated. Formal comments that further
document decisions may be included in the SDL design; these comments are ex-
tracted by the tool, and included in the MSC at the appropriate places. Analysis
of the SDL design and the generation of (more complex) MSCs will be treated
in Section 3. If, in the state reached by a scenario, there is only one possible
input trigger, then this scenario is merged with the subsequent one.

With each graphical symbol of an SDL transition (e.g., states, triggers, ac-
tions), an optional comment that explains design decisions or the purpose of
certain actions may be associated. These comments are later inserted in the ap-
propriate places of generated description elements. An example of such a com-
ment is shown in Fig. 6. The individual comments are assembled into the informal
text describing the scenario (see Fig. 5).
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Fig. 5. Tool output: interface behaviour scenario with informal description

Fig. 6. Formal comments: transition documentation

2.4 Service

A core element of a micro protocol description is the service that is provided
by the cooperation of micro protocol entities. In the micro protocol description
the service is captured by a set of global scenarios, one per state and exter-
nal transition trigger, documented by MSCs. A service scenario of the InRes
protocol is shown in Fig. 7. The scenario describes a connection setup, which
is triggered by an external signal CON req. This is followed by a CON ind is-
sued to the other service user, who accepts (CON resp) or rejects (DIS req) the
connection. Dashed lines indicate internal signal exchanges. The service scenario
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is complemented by a textual description, generated from the SDL design and
formal comments.

To generate service scenarios, matching local scenarios of interacting proto-
col entities are identified and composed, with internal signals and actions being
removed. For instance, in case of connection setup, the local scenario in Fig. 5
with the incoming external signal CON req forms the starting point. Next, the
internal output CR of this scenario is matched with a corresponding internal in-
put of another micro protocol entity. In general, these may be different signals,
as the underlying service that connects micro protocol entities may perform a
renaming. To cope with this difficulty, we provide a formal comment as shown
in Fig. 8, associating internal signals of different micro protocol entities. In the

Fig. 7. Tool output: service scenario
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Fig. 8. Formal comment: corresponding signals of interacting protocol entities

example, this is the identical mapping. The selected scenario, which consumes
the internal signal CR and outputs a CON ind to the service user, is appended
to the triggering scenario, internal signals and actions are removed. Further sce-
narios are appended until the service scenario is “complete”, which is indicated
by additional formal comments (see Sect. 3). In the example, two alternative re-
sponses from the service user and a timeout are possible, which are represented
by inline expressions in the MSC in Fig. 7.

2.5 Architecture

The architecture of a micro protocol is described by a simple diagram, showing
protocol entities and their virtual communication structure. Fig. 9 shows the
architecture diagram of the symmetrical, reduced version of the InRes proto-
col. Arrows with solid lines represent service access points, arrows with dashed
lines express virtual communication among micro protocol entities. The tool also
supports asymmetrical micro protocols, and architectures with more than two
protocol entities.

2.6 Required and Provided Definitions

The design specification of a micro protocol consists of SDL type definitions, col-
lected into an SDL package. These type definitions may be used by other SDL
packages and/or SDL system specifications. On the other hand, the design spec-
ification may require definitions contained in other SDL packages. The required
and provided definitions list these dependencies as well as the used SDL pack-
ages. Both kinds of information can be derived by analysing the micro protocol
design. We omit the tool output, which is purely textual.

Fig. 9. Tool output: architecture
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3 Analysis and Generation Algorithm

The generation of a micro protocol description element is triggered by a formal
comment on package level, consisting of version, author, intent, and an optional
checklist with assumptions that need to be satisfied for the protocol to operate
correctly (see Fig. 2). In Sect. 2, we have elaborated on the tool output, and have
pointed out the need for supplying extra information to enable the generation
of the description elements. In this section, we will focus on the analysis and
generation algorithm for the extraction of local and global scenarios, i.e. on
interface behaviour and micro protocol service.

3.1 Interface Behaviour

The analysis of the interface behaviour starts with the transformation of the
syntax tree into a simplified and aggregated form, consisting of a set of Fragments
describing transitions. Fragments are represented by a tuple of origin state, an
optional label, the input trigger, timer operations, output of signals, a list of
possible branches within a transition and the optional connector or next state.
Further components of this data structure are required for specific decisions and
omitted here.

Fragment =def { state, label0..1, input0..1, timer∗, output∗, branch∗,

connector0..1, nextstate0..1}

Equation 1: Definition of a transition fragment

The set of Fragments covers all transitions, free actions and decision branches
of the transition graph of a state machine. Details that are not required for the
generation of local scenarios (such as expressions and tasks) are omitted.1

The simplification and reconstruction of the set of Fragments is performed
as follows: Elements without signal transfer and without timer operations are
removed, and the additional information such as the optional label, nextstate
and comments are shifted to subsequent Fragments. The number of decision
branches is reduced by merging the comments of branches with the same visible
behaviour. Additionally, branches are reordered based on their boolean con-
ditions, to provide a more uniform documentation. Finally, for each element
without user-provided comment, a generic comment is created.

The SDL excerpt in Fig. 10(a) is represented by the following set of fragments
f1..6 (see Equation 1):

f1:= { “state1” , - , “sig1” , {t1} , {} , {} , - , f2 }
f2:= { - , “label1” , - , {} , {} , {f3, f4, f5} , - , - }

1 Expressions are analysed when the required definitions are determined.
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(a) excerpt from SDL (b) generated MSC

Fig. 10. Example for the simplification and reconstruction

Fragment f1 contains the origin state “state1”, the input of the signal “sig1”
and the operation on timer “t1”. Due to the label between task and decision,
the transition is disrupted at this point, and a reference to the subsequent frag-
ment f2 is inserted, holding the actual label and the set of further fragments
representing decision branches. The comment associated with the decision is
also contained in fragment f2.

f3:= { - , - , - , {} , {} , {} , “label2” , - }
f4:= { - , - , - , {} , {} , {} , “label2” , - }
f5:= { - , - , - , {} , {“sig2”} , {} , “label1” , - }
f6:= { - , “label2” , - , {} , {} , {} , - , “state2” }

Fragments f3..5 represent the tree decision branches in Fig. 10(a). f3 and f4

describe internal behaviour, no signals are sent2. Therefore, only the connector
“label2” is inserted. f5 describes the decision branch with the output of the signal
“sig2” and a connector “label1”, yielding a loop. f6 is a free action “label2”,
terminating the transition and leading to “state2”.

By exploiting certain properties, fragments can be simplified and restructured.
For example, for a given origin fragment, all branches and connectors can be
traced recursively unitl either a next state or the origin fragment are reached,
the latter indicating a loop. The same approach is used to determine whether
subsequent fragments exhibit the same visible behaviour. For instance, analysis
of fragment f2 will reveal the existing loop.

2 Procedures are currently not part of the analysis.
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Additionally, a simplification of the decision branches f3..5 is performed. Since
f3 and f4 both exhibit the same visible behaviour, they are merged into one
fragment, combining their comments. Although the resulting fragment f3 has
neither timer operations nor signal outputs, it can not be removed, since it is
the only loop exit to a next state.

The simplified and restructured set of Fragments can be directly used to
generate local scenarios of the interface behaviour description. Each Fragment
with a given input trigger together with all timer operations and outputs of
signals is documented. A local scenario terminates when the next state is reached.
Loops and decisions are represented by inline expressions. The local scenario
derived from 10(a) is shown in 10(b) and assembles the following fragments:

– f1: describes the origin state, the input of the signal and the timer operation
– f2: detects the loop and explains the decision
– f3: decision branch, describing the condition of f3 and f4, and that no further

operations are performed
– f5: decision branch, describing the condition and the output of signal “sig2”

3.2 Service Scenarios

The algorithm for the provided service is more sophisticated, since the interaction
of multiple micro protocol entities must be considered. First of all, the algorithm
generates the number of required micro protocol entities, each capable of keeping
its current state. The trigger for a service scenario is determined in a way similar
to interface behaviour scenarios. However, the possibility of already documented
transitions and the number of outputs and inputs of a scenario must be taken
into account. A major difference between (global) service scenarios and (local)
interface scenarios is that internal signal outputs are mapped to internal triggers
of other micro protocol entities, with the signal type being hidden in the scenario
description. This means that local scenarios are merged into global scenarios and
additional language features such as enabling conditions and saves can be taken
into account.

The reception of a signal can lead to a signal output to the service user. In this
case, there may be a related response from the service user, which is considered
to continue the service scenario. The expected reply can be either analysed by
the algorithm, or can be indicated by suitable formal comments. The scenario
is continued with all possible answers from the service user. Additionally, all
possible timeouts in all protocol entities are taken into account. This procedure
is repeated until either no further undocumented behaviour is detected or the
algorithm reaches the originating protocol entity where only triggers from the
service user are possible (see Fig. 7). For each scenario, the number of signal
outputs to the service users in other protocol entities is predetermined in order
to discard scenarios without visible behaviour.

In order to examine the overall behaviour of the micro protocol, the global
state is held as a set of all traversed states of the participating protocol enti-
ties. The documentation terminates when all transitions of all states have been
documented.
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Fig. 11. Architecture of the AmICom service platform

Fig. 12. AmICom: Unsuccessful subscription

Fig. 11 shows the generated architecture of our distributed service platform
AmICom, which consists of several micro protocols, specified as self-contained
components in separate SDL packages. They are composed by use of inheritance
to describe the two different service roles SimpleServiceProvider and Simple-
ServiceUser. A ServiceProvider represents an available service in the network,
to which multiple ServiceUsers can subscribe. The SDL system of the AmICom

specifies one protocol stack interacting with the environment. The protocol stack
is instantiated on each node in the network. Therefore, it is not possible for the
documentation algorithm to determine the relationship between ServiceProvider
and ServiceUser from the SDL specification. Formal comments (see Fig. 8) pro-
vide the necessary information. The process userProviderManagement coordi-
nates the interaction with the applications using this communication platform.

The documentation algorithm extracts typical service scenarios from the SDL
specification. In Fig. 12, one of the possible initial actions of an application
is presented. The subscription of a service in the network (Subscribe req) is
unsuccessful, since no service has been registered yet.

The second service scenario (Fig. 13) shows the registration of an application
service. The signalRegister req is sent to SimpleServiceProvider, whichbroadcasts
the registration request in the network in order todetermine whether the same kind
of application service has already been registered. This message is processed by
all instances of SimpleServiceProvider in the network. If no objection is received
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Fig. 13. AmICom: Registration of an application service

Fig. 14. AmICom: Subscription at an application service

within a certain amount of time, the timer confTimer is fired and Register ind
indicates the successful registration to the requesting application.

At this point, the algorithm considers traversed states of the participating pro-
tocol entities and can determine that the trigger from the first scenario (Fig. 12)
now leads to a different, extended scenario. Therefore, the scenario with different
initial states in each protocol instance is recreated (Fig. 14). This time, the Reg-
ister req is successful, since an application has registered an application service at
SimpleServiceProvider. A confirmation is sent back to the ServiceUser and the ap-
plication is informed about the successful subscription.

Further scenarios complement the service description of AmICom, which de-
scribe the exchange of data.
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4 Related Work

The integration of documentation into software models and the development pro-
cess has been thoroughly studied in software engineering, and has led to numer-
ous tools supporting the developer in the documentation process. Tools such as
JavaDoc and Doxygen [14] examine specific comments in the code, which are then
included in automatically generated documentations. However, these documen-
tations only contain descriptions of static elements such as data type definitions,
classes, and methods. The algorithms are not powerful enough to analyze the code
and thereby find relationships and dependencies ofmethods or comprehend the be-
haviour. This originates from the language size and complexity. SDL, in contrast
to traditional programming languages, facilitates a trace of the behaviour, due to
well-defined semantics and the employment of a state machine model, and there-
fore allows the generation of abstract behaviour scenarios and descriptions. In [1],
a tool for the generation of SDL specifications from MSCs is presented. In the con-
text of our generateddocumentation, this tool could be used to merge the scenarios
of multiple micro protocols, yielding MSCs that represent the interaction of micro
protocols.

In [8], a transformation of transition graphs is presented, which generates a se-
mantic interface description of SDL components. The authors address various lan-
guage features that are involved in the transition selection and present a number of
transformations. The transformations include the removal of symbols for internal
signal exchange from the transition graph, which leads to a description with the
visible behaviour of the components. The reduction of the transition graph tends
to result in mistakes in the transition selection, e.g. when transitions are replaced
by spontaneous or empty τ -transitions. For this purpose, the authors propose rules
that maintain the semantic correctness of the specification (e.g. for the application
of save). Furthermore, the removal of identical decision branches and the replace-
ment of timers by spontaneous transitions leads to a reduced transition graph.

The documentation algorithm in this paper does not remove signals from the
specification. The simplifications affect tasks, branches, possible loops, and con-
nectors. Besides the simplification of the transition graph, the algorithmhas to take
all comments in theSDL specification into account andmustnot removeFragments
from the transition graph if they are essential for a meaningful documentation of
the behaviour. Timers are also preserved and considered as periodically reappear-
ing events or timeouts for an oberserved operation.

5 Conclusions

In this paper, we have presented an approach and tooling for the automated genera-
tion of micro protocoldescriptions from augmented SDL design specifications. The
approach further emphasizes the central role of the design model in model-driven
software development: all relevant information is concentrated in one document.
From this document, the complete micro protocol description, including interface
signature and behaviour, service, and architecture, as well as the simulation and
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production code (see [12]) are generated. This enhances the maintenance of micro
protocol libraries, and supports the consistency and traceability of micro protocol
description elements and SDL design specifications.

Currently, the approach and tooling are being applied in several research ac-
tivities and student assignments. In one project, we are developing a communica-
tion middleware for ambient intelligence systems, where several micro protocols
are devised and composed. Another research activity deals with complex routing
protocols composed from micro protocols, supporting different kinds of address-
ing mechanisms and topological situations in wireless ad-hoc networks. In further
projects, we are devising quality-of-service protocols for ad-hoc networks, with el-
ementary components defined as micro protocols. In all these activities, the auto-
mated generation of micro protocol descriptions is a great support.

Certainly, there is still room for improving the tooling presented in this paper.
For instance, the algorithms sketched in Sect. 3 can be extended to deal with addi-
tional SDL language features, specially procedure calls. Also, a tighter integration
of the generated description elements and the SDL design specification by adding
further links leading to corresponding excerpts of the SDL design appears feasible.
An analysis of the importance of scenarios, together with some heuristics, may im-
prove the value of the generated description elements for the developer. Finally,
further description elements to deal with macro protocols resulting from the com-
position of micro protocols should be considered.
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Abstract. A fundamental problem in the area of service engineering is
the so-called cross-cutting nature of services, i.e., that service behavior
results from a collaboration of partial component behaviors. We present
an approach for model-based service engineering, in which system compo-
nent models are derived automatically from collaboration models. These
are specifications of sub-services incorporating both the local behavior
of the components and the necessary inter-component communication.
The collaborations are expressed in a compact and self-contained way
by UML collaborations and activities. The UML activities can express
service compositions precisely, so that components may be derived au-
tomatically by means of a model transformation. In this paper, we focus
on the important issue of how to coordinate and compose collaborations
that are executed with several sessions at the same time. We introduce
an extension to activities for session selection. Moreover, we explain how
this composition is mapped onto the components and how it can be
translated into executable code.

1 Introduction

In its early days, reactive software was mainly structured into activities that
could be scheduled in order to satisfy real-time requirements. As a result, the
rather complex and stateful behavior associated with each individual service
session and resource usage was fragmented and the overall behavior was often
difficult to grasp, resulting in quality errors and costly maintenance.

The situation was considerably improved by the introduction of state ma-
chines modeling stateful behavior combined with object-based and later object-
oriented structuring. By representing individual resources and sessions as state
machines, their behavior could be explicitly and completely defined. This prin-
ciple helped to substantially improve quality and modularity, and therefore be-
came a widespread approach. It also facilitates the separation between abstract
behavior specifications and implementation, and enabled model-driven develop-
ment in which executable code is generated automatically from state machines.
SDL [1] was developed as a language to support this approach and, considering
its adoption and support, we must say that it has been successful at it.

E. Gaudin, E. Najm, and R. Reed (Eds.): SDL 2007, LNCS 4745, pp. 166–185, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Relationships between components and collaborations

However, there is a fundamental problem. Service behavior is normally dis-
tributed among several collaborating objects, while objects take part in sev-
eral different services. By structuring according to objects, the behavior of each
individual object can be defined precisely and completely, while the behavior
of a service is distributed across the objects. This is often referred to as the
“crosscutting” nature of services [2,3,4], and is one of the underlying reasons
why compositional service engineering is such a challenge. Fundamentally, the
behavior of services is composed from partial object behaviors, while object be-
haviors are composed from partial service behaviors.

A promising step forward to solve this problem is to adopt a collaboration-
oriented approach, where the main structuring units are formal specifications
of services containing both the partial object behavior and the interactions be-
tween the objects needed to fulfill the service. These specifications are called
collaborations. Albeit many of the underlying ideas have been around for a long
time [6,7], the new concept of UML 2.0 collaborations [5] provides a modeling
framework that opens many interesting opportunities not fully utilized yet. First
of all, collaborations model the concept of a service very nicely. They define a
structure of partial object behaviors, the collaboration roles, and enable a precise
definition of the service behavior. They also provide a way to compose services
by means of collaboration uses and role bindings.

Figure 1 shows a coarse system architecture illustrating the relations between
collaborations and objects (referred to as components in the following). A ser-
vice is delivered by the joint behavior of the components x1 to x3, which may
be physically distributed. The service described by collaboration c1 can be com-
posed from the two sub-services modeled by collaborations c2 and c3. The neces-
sary partial object behavior used to realize the collaborations is represented by
so-called collaboration roles r1 to r4. Note how the collaborations cut across the
components and define inter-component behavior. Orthogonal to this, compo-
nent behavior is defined by composition of collaboration roles. Communication
between components is assumed to be based on asynchronous message passing
only (cf. [8]), while communication within one component may also use shared
variables and synchronously executed actions (i.e., an event in one collaboration
can cause actions in another collaboration).
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Fig. 2. Service Engineering Approach

We have found that collaboration-oriented decomposition tends to result in
sub-collaborations corresponding to interfaces and service features [9] with be-
havior of limited complexity that may be defined completely and be reused in
many different services. This simplifies the task of defining inter-component be-
havior and separates it from the intra-component composition. It has been shown
in [10,11] that collaborations also provide a basis for analysis and removal of er-
rors at a higher level of abstraction than detailed interactions.

A well established approach is to model “horizontal” collaborative behavior
using MSCs or UML sequence diagrams. They provide the desired overview, but
will normally not be used to define the complete behavior. In this paper, we
present our approach (see also [13,14]) in which the complete behavior of collab-
orations is defined using UML activity diagrams. We offer an extension to UML
that enables to compose also behavior that is executed simultaneously in several
sessions. This enables a complete and precise definition of the inter-component
behavior of each collaboration as well as the intra-component behavior com-
position of collaborations, without the need to specify interaction details. The
approach enables an automatic synthesis of component behaviors in the form of
state machines from which executable code is automatically generated, as illus-
trated in Figure 2. By defining the semantics of activities and state machines
using the temporal logic cTLA [12], we are able to verify by formal implica-
tion proofs that the transformations of the collaboration-oriented models to the
state machines are correct (see [13]). This formal aspect, however, is not the
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Fig. 3. Illustration of the system

focus of this paper. In the following we first introduce the collaboration-oriented
specification approach by means of an example, and show how multiple session
instances can be coordinated. Afterwards, we describe the transformation from
collaboration to component behavior.

2 Collaborations

In Fig. 3 we introduce a taxi control system. Several taxis are connected to a
control center, and update their status (busy or free) and their current posi-
tion. Operators accept tour orders from customers via telephone. These orders
are processed by the control center which sends out tour requests to the taxis.
Taxis may also accept customers directly from the street, which is reported to
the control center by a status update to busy. Fig. 4 defines this as a UML 2.0

c: Control 
Center

taxi: Taxi 
[1..*]

taxi requestor

«external»
op: Operator[1..*]

operator

o: Tour 
Order

Taxi System

p: Position
observerobserved

t: Tour
Request

s: Status
Update

Fig. 4. UML Collaboration
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collaboration. Participants in the service are represented by collaboration roles
taxi, c, and op. For the taxis and the control center we will later generate com-
ponents. The operators are part of the environment and therefore labeled as
�external�. The control center c has a default multiplicity of one, while there
can be many taxis and operators in the system, denoted by multiplicity [1..*].
Between the roles, collaboration uses denote the occurrence of behavior: taxis
and control center are interacting with collaborations Status Update, Position
and Tour Request, while the operators are cooperating with the control center by
means of collaboration Tour Order. In this way, the entire service, represented
as collaboration Taxi System, is composed from sub-services.

2.1 Describing Behavior of Collaborations

Besides being a so-called UML structured classifier with parts and connectors
as shown in Fig. 4, a collaboration is also a behaviored classifier and may as
such have behavior attached, for example state machines, sequence diagrams
or activities. As mentioned in the introduction, we use activity diagrams. They
present complete behavior in a quite compact form and may define connections
to other behaviors via input and output pins. In [14,15] we showed how service
models can be easily composed of reusable building blocks expressed as activities.

The activity Status Update (Fig. 5) describes the behavior of the correspond-
ing collaboration. It has one partition for each collaboration role: observer and
observed. As depicted in Fig. 4, these roles are bound to c and taxi, so that
the observer is the control center that observes a taxi. A pleasant feature of our
approach is that we can first study and specify the behavior of the control center
towards one taxi and we later compose this behavior, so that the control center
may handle several taxis.

Activities base their semantics on token flow [5, p.319]. Hence, a token is
placed into the initial node of the observer in Fig. 5 when the system starts. The
token moves through the merge node, upon which the observed party sends its
current status to the observer. The observer then updates its local variable s2.
From then on, the taxi pushes any status change to the control center. As these
changes depend on events external to this collaboration, they are expressed by
the parameter nodes set free and set busy. These are streaming nodes through
which tokens may pass while the activity is ongoing. Later, the parameter nodes
(represented by corresponding pins on call behavior actions) will be used to
couple the status update collaboration with the other collaborations. In addition,
we defined an operation available for the activity that we will later use to access
the status of a taxi from the control center. As this operation accesses variable s2
localized in the observer, we use the constraint {observer} to mark that it may
only be accessed from the side of the observer. The collaboration Position (not
shown) works similarly by notifying the observer about the current geographical
position.

The collaboration Tour Request depicted in Fig. 6 models the process of no-
tifying a taxi about a tour. It is started via parameter node request tour, which
starts timer t and places a token in waiting decision node w. A waiting decision
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Status Update
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s2: Status = unknown;

s2:=status

set

free

busy

s1:=free

s1:=busy

create status=s1

free,  busy,  unknown

«enumeration»
Status

{observer} available () : boolean {
    return s2==free;}

s1: Status = free;

Fig. 5. Activity for Status Update

node is the extension of a decision node with the difference that it may hold
a token similar to an initial node, as defined in [13]. w is used in combination
with join nodes j1 and j2 to explicitly model the race between the acceptance
of the tour by the driver and the timeout mechanism. Another flow is forwarded
to the taxi which first checks its status. This is necessary as the taxi can in
fact be busy even if it was available when the requestor started. This is due
to the inevitable delay of signals between the distributed components, so that
the taxi may have accepted a customer from the street while a request is on its
way. In general, the flows between the control center and the taxi (as well as
all other flows crossing partitions) are buffered. We describe this in a so-called
execution profile (see [5, p. 321]) for our service specifications [16] and model it
by implicit queue places, as described in [13]. If the taxi is still free, the control
flow is handed over to some external control not part of this collaboration. If
the taxi driver accepts the tour, the control flow returns, and a token is offered
to join node j1. If w still has its token, j1 can fire, emit a token on accepted on
the requestor side, and then terminate the collaboration on the taxi side with
an activity final node and output node accepted1. In case the taxi turned busy
or a timeout occurs, a token is offered to j2. It fires if w still has its token, so
that the collaboration first notifies the requestor upon the cancelation and then
terminates the collaboration on the taxi side.

Note that the events accept tour and the timeout may both happen, as they
are initiated by different parties. This is a so-called mixed initiative [18] that

1 As this ending is alternative to the cancelation of a tour request, it must be expressed
by its own UML parameter set, denoted by the additional box around the node.
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Fig. 6. Activity for Tour Request

must be resolved to prevent erroneous behavior in which one side accepts the
request while the other one considers the request as canceled. The taxi therefore
sends the acceptance of a tour first to the requestor and waits for a confirmation;
if the timer expired in the meantime, the acceptance is intercepted in j1 and the
collaboration terminates consistently with canceled on both sides.

2.2 Composing Collaborations with Activities

To generate state machines, components and finally the executable code for the
system components, the structural information about how the collaborations are
composed (as shown in Fig. 4) is not sufficient. In fact, we need to specify in
detail how the different events of collaborations are coupled so that the desired
overall behavior is obtained. For this purpose we use UML activities as well, as
they allow us to specify the coordination of executions of subordinate behaviors [5,
p. 318]. Using call behavior actions, an activity can refer to other activities. Like
this, the activity of a composite collaboration may refer to the activities of its
sub-collaborations and specify how they are coordinated.

Fig. 7 shows the activity for the composed taxi system. Again, each collabo-
ration role is presented by its own activity partition. As the taxi system collabo-
ration is composed from several other collaborations, the activity refers to them
via the call behavior actions s, p, t and o. Let us first focus on the partition
for the taxi on the left hand side. It describes the local coupling between the
collaborations a taxi participates in, including some additional logic for the user
interface of the taxi, modeled as activities for three buttons and an alarm device
that have been fetched from our library of reusable building blocks [17]. When
the taxi partition starts, button busy is activated. The driver presses it once
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a customer from the street orders a tour whereupon the button emits a token
at exit push. This updates the status of the taxi to busy by coupling push of
the busy button with set busy of the status collaboration2. In addition, button
ready is activated to signal the termination of the tour by the driver. As the
taxi participates in the collaboration Tour Request (represented by the call be-
havior action t), it must also handle the event when a tour request arrives from
the control center, which is accessible through the output pin tour request of t.
This event triggers the deactivation of the busy button, and activates the accept
button as well as an alarm to notify the driver. The accept button, which is
pushed if the driver accepts, notifies the collaboration t. Depending on the final
outcome of the tour request collaboration (it may still be aborted by a timeout),
either the ready button is activated and the status is changed to busy, or the
taxi remains available and the busy button is activated again. The position col-
laboration needs no coupling, as it constantly sends the position independently
of the other behaviors.

3 Multiple Behavior Instances and Sessions

From the viewpoint of one taxi, there is exactly one collaboration session for
each of the three collaboration uses s, p, t towards the control center. This can
be handled easily with the UML activities in their standard form. The control
center, on the other hand, has to maintain these sessions with each of the taxi
cars. From its viewpoint, several instances of each of the collaboration uses s,
p and t are executed at the same time; one instance for each taxi. Moreover,
the tour order collaboration not only has to be executed concurrently towards
several operators, but each operator may also request new tours while others are
being processed. From the viewpoint of the control center, the collaborations it
participates in, are what we call multi-session collaborations. We express this by
applying a stereotype �multi-session� to the call behavior actions and represent
it graphically by a shadow-like border in those partitions where sessions are
multiple3. Consequently, the call behavior actions (resp. sub-collaborations) s,
t, and p in Fig. 7 have a shadow within the control center partition, while o is
multiple both in the control center and the operators4.

This raises the question about how the different instances of collaborations
may be distinguished and coordinated, so that the desired overall system behav-
ior is obtained. A selection of sessions must take place whenever a token enters
a multi-session sub-collaboration (as for example via the pin at ➊). While in
some cases we may want to address all of the sessions, in other ones we like
to select only a subset or one particular session. The UML standard, however,
does not elaborate this matter but instead forbids streaming nodes on reentrant

2 For presentation reasons, this flow is segmented graphically by connector b.
3 Technically, the corresponding partitions are stored as a property of the stereotype.
4 In this paper we focus on the partitions taxi and control center and do not further

look into the operator partition.
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behaviors completely, as it is ambiguous which execution should receive stream-
ing tokens [5, p. 398]. This is too restrictive, as most systems exhibit patterns
with several executions going on at a time, that possibly need coordination. We
therefore added the new operators select and exists to our execution profile.

3.1 Identification of Session Instances

First of all, the different sessions must be distinguished at runtime. This resem-
bles the well-known session pattern (see for example [19, p. 191]) that is found
in client/server communication, where the server has some kind of identifier to
distinguish different sessions. Accordingly, each collaboration session has an ID.
For collaborations having one session instance for a specific participant, the ses-
sion ID can be chosen to be identical to that of the participant. For example, we
can use the ID of the taxi to identify the session instances of the Tour Request,
Status Update and Position collaboration. This is similar to SDL, in which a
process identifier pid of a communication partner is often used to refer to a
session. If there can be more than one session per communication partner (the
control center can for instance have several ongoing tour orders from the same
operator) any other unique identifier can be used; for collaboration Tour Order
we can use a unique order number.

3.2 Choosing Session Instances with Select

When an operator accepts an order from a customer, a token leaves the output
pin tour order of o in Fig. 7. Let us ignore for the moment the decision and
assume it takes the upper branch, towards input pin request tour of t at ➊. At
this point we have to specify into which session instance of t the token should
enter. We do this by attaching an expression as guard to the edge entering the
input pin. If we would like to select all instances (by duplicating the token), we
could write select all, resulting in an alarm in each taxi, whether busy or free,
which is not desired. Instead, we would like to select only one of the free taxis.
This means, we want to access properties of the s: Status Update sessions. As
collaboration uses s and t have the same set of IDs, we would like to obtain an
ID of s for which the status is free. To enable the control center to check the
status of its taxis, we defined in the activity Status Update (Fig. 5) a boolean
operation available which is executable from the observer side. This operation is
used in the select statement. As there may be more than one free taxi, we further
specify by adding the keyword one that only one of them should eventually be
selected. The entire statement is then

select one : s.available.

If none of the taxis is free, no session is selected and the token flow simply stops.
We describe later how this situation is ruled out by an alternative behavior using
the decision node. If a tour request is canceled, another taxi can be contacted
(via connector c) by iterating a new tour request.
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Once the selected taxi accepts the tour, a token leaves output pin accepted
and enters o: Tour Order. Here we have to select again which of the instances
should be chosen. As they are distinguished by the order number, we leave this
number as attribute order inside the token5, and extract it by writing

select one : id=order.

The complete EBNF definition for session selection and existence is given in
Fig. 8. It allows specifying several filters (e.g., available) that are applied in the
order of their listing. In this way, we may flexibly use a sequence of filters, for
example to call the taxi that is closest to the street address. In this case we would
introduce a filter nearest which considers the location of the taxis provided by
collaboration p and computes the taxi which is closest to the customers position.

select := ‘select’ mod ‘:’ [{filter}] [ ‘/’ {filter} ].

exists := ‘exists’ name ‘:’ filter [ ‘/’ {filter} ].

mod := ‘one’ | ‘all’.

filter := name | ‘self’ | ‘active’

| ‘id=’ variable.

Fig. 8. EBNF for select and exists

Taxi System
control centertaxi

m: Messaging

send to all

send personal

select all : /self

receive message
send

broadcast

personal

select one : 
id=receiver

Fig. 9. Messaging service extension

As we still want to select only free taxis, we can apply the available filter before,
and write select one : s.available nearest, so that an ID has to pass both filters.

To study another form of session selection, we extend the system with a
messaging service, where taxi drivers may send messages to each other; either to
5 This implies an UML object flow instead of a simple control flow, which we do not

show here to keep the diagrams easier to comprehend.
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a specific taxi or to all taxis. Parts of this addition are shown in Fig. 9. Messages
are sent via the control center, which maintains one instance of a collaboration
Messaging with each taxi. As we attach the select statement to the incoming
edges and not the nodes directly, a node may be entered with different selection
strategies, combined by a merge node. Personal messages arrive from a taxi at
pin personal and are forwarded by the ID stored as receiver, with the known
selection statement. Broadcast messages are sent to all other sessions, except
the session sending the message, expressed by select all : /self. The slash allows
to specify negative filters for exclusion. (If for any reason drivers should send
broadcasts just to free taxis, we would write select all : s.available /self.)

3.3 Reflecting on Sessions with Exists

In some cases we have to reason about the status of certain sessions. For example,
before we process a request from the tour order collaboration, we check if there
are any free taxis available at all. We do this with the operator exists that returns
a boolean value that can be the guard in a decision. In Fig. 7, we include therefore
exists s : s.available, where s.available denotes the filter introduced above. Thus,
in the example, the selection at ➊ is only reached if at least one taxi is free. If we
want to make a decision depending on the fact whether there are any currently
ongoing collaboration sessions (which have an active token flow) we may use the
standard filter active.

3.4 Modeling of Filters

A filter is modeled as an UML operation. Boolean filters only considering one
session can be defined as part of the activity describing the collaboration (like
available in Fig. 5). Filters that need to consider an entire set of sessions or
combine data from different collaborations are defined as part of the surrounding
activity, such as the filter nearest. In contrast to the boolean filter available,
nearest receives and returns an entire set of IDs, from which it can determine
the one with the minimal distance to the address given by the token. The address
is contained in the token, which is handed over to the filter by the parameter
token. In principle, the body of operations may be expressed as any kind of UML
behavior; in our current tool we use Java, embedded in a language-specific UML
OpaqueBehavior [5, p. 446], since our code generators create Java code.

4 Mapping to the Component Model and Implementation

In the following, we will discuss how the collaboration models are transformed
into the executable component model of our approach. After introducing the
component model, we explain the translation of single-session behavior and
thereafter the mapping of multi-session behavior to state machines.
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4.1 Component Model

Our component model is based on UML 2.0 state machines and composite struc-
tures. In [20] we presented an UML profile with constraints ensuring that state
machines can be implemented efficiently on different platforms. The internals of
such executable state machines are similar to SDL processes. They communicate
by sending signals, and transitions are triggered by either the reception of a
signal or the expiration of a timer. Transitions do not block, so that they can be
executed in one run-to-completion step without waiting.

We extend this model with components that may contain a number of state
machines. Such system components are described by UML classes, and contain
one dedicated state machine describing the so-called classifier behavior. This
state machine typically manages the lifecycle of the component as well as state-
less requests arriving from other components, as we shall see later. In addition,
a system component can contain further state machines. These are modeled as
UML parts owned by the structured classifier and have a type referring to a
state machine. In contrast to the static state machine expressed by the classifier
behavior, these parts may have a multiplicity greater than one, so that a system
component can hold any number of session instances of different state machine
types. A component structure generated by our transformation algorithm is il-
lustrated in Fig. 10 with two taxis and three operators. The taxis have only
their default classifier state machines, while the control center component needs
additional session state machines, as we will explain in Sect. 4.3.

t: requestor

t1: Taxi

t2: Taxi

c: Control Center

StatusUpdate

t: requestort: requestoro: order
[1..*]

TourRequest

TourRequest

TourOrder

t: requestort: requestor
[1..*]

TourOrder

TourOrder

TourOrder

StatusUpdate

Position

Position

Fig. 10. Component structure and their interrnal session state machines

A system component keeps track of its state machine instances in a data
structure for reflection. Each state machine instance has an ID, so that each of
them may be addressed within the component by its part name and ID. State
machines may access data of other state machines within the same system com-
ponent. This is used when behavior in one state machine depends on variables
in another ongoing collaboration that is executed by another state machine.
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4.2 Mapping of Single-Session Collaborations

In [13] we described an algorithm that transforms activities into executable state
machines. One activity partition is translated into at least one state machine.
The algorithm scales well since only one partition needs to be considered at a
time, not the entire activity. The core idea of this transformation is to map a
flow crossing partition borders to a signal transmission between two state ma-
chines. Token movements within one partition are translated into state machine
transitions. A token starts hereby always at the reception of a signal (where a
flow enters a partition) or at a timer node, so that the resulting transitions are
triggered by signal receptions or timeouts. A token flow continues traversing the
activity graph until the next stable marking is reached, either in form of a join
node that cannot yet fire, a waiting decision, a timer node or by leaving the
current partition. This stable marking is encoded as control state of the state
machine. In this way, the algorithm constructs the entire state machine by a state
space exploration of the activity partition corresponding to the state machine.

These basic transformation rules enable a direct mapping of activity flows
to state machine transitions as explained and verified in [13]. Moreover, several
single-session collaborations composed within the same partition may be inte-
grated within the same state machine by combining their state spaces. Therefore,
when we synthesize the component for a taxi, both the behavior for the status
update and the tour request collaborations may be implemented by the default
state machine, as shown in Fig. 10.

4.3 Mapping of Stateless Multi-session Collaborations

When we analyze the collaboration for the status updates, we find that taxis can
send updates at any time, and that the central control has to be prepared at any
time to receive them. The behavior on the side of the central control (partition
observer in Fig. 5) is stateless, i.e., an update does not cause a change of behav-
ior, but only modifies data. Our algorithm detects this by looking for partitions
to be executed by the central control that do not contain any activity nodes that
imply waiting (joins, timers or waiting nodes). The algorithm transforms status
updates into one state machine transition that has identical source and target
control states. This means for the central control that it does not have to distin-
guish separate control states for each taxi. Instead, the logic to handle status up-
dates of all taxis may be integrated into one single state machine. The same holds
for the behavior of the position collaboration, so that both the status update and
the position collaborations may be synthesized into the default classifier behav-
ior of the control center. Fig. 11 depicts the classifier state machine of the control
center. The just mentioned behavior for status and position updates are carried
out by the two transitions on the left side which are triggered by the external sig-
nals status and position arriving from taxis. The data about position and status
has to be stored for each taxi individually, which is done via the the arrays s2 and
pos with the taxi IDs as keys. For stateful behavior towards multiple partners, the
state must be kept for each individual session. There are two principal solutions.
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One solution is to integrate several sessions into one state machine and to distin-
guish the conversational states by data structures. This, however, leads to state
machines with many decisions. The other solution is to use a dedicated state ma-
chine instance for each session, such that the state of each session is represented
by an individual control state. If state machines are edited manually (for exam-
ple in TIMe [21]), the second solution is preferred, as the state of conversation
towards communication partners can be expressed explicitly by the control state
of the state machine, which makes them easier to understand [22]. This may be
of minor significance in an approach generating state machines automatically,
but it is nonetheless beneficial if results of the transformation shall be read by
humans or be validated with existing techniques [18]. We therefore decided to
use one state machine for each session. The fact that this solution may lead
to many state machine instances is not problematic, as even large numbers of
state machines may be implemented efficiently within the same native operat-
ing system process by means of a scheduler (see, e.g., [20,22]). A context switch
between such state machines just requires to retrieve the current state from a
data structure. In a solution integrating all sessions into one state machine, a
similar operation would be needed, as we also have to retrieve data belonging to
the current state of conversation with a communication partner.

4.4 Mapping and Implementation of select

The instances of stateful multi-session collaborations are represented locally by
session state machines, as we discussed above. Directing control flow to a single
or a set of collaboration instances means therefore to transfer control flow to the
individual session state machines within a component. This is done by notifying
the corresponding state machines via internal signals. In order to reduce the
possible interleaving of internal and external signals, we apply the design rule
given in [22] recommending that internal signals are assigned a higher priority
than signals coming from other components. In general, this leads to components
that complete internal jobs before accepting external input. In our case, it solves
the problem as any select signal sent to a session state machine will be handled
before an external signal can change its state.

Which state machine(s) should receive the signal(s) is determined by the se-
lection statements from the activities. The transformation therefore copies each
selection statement from the edge of the activity and attaches it to the corre-
sponding send signal action. The UML signal is created from the flow. It includes
parameters for the data contained in the activity token it represents. The ses-
sion selection at point ➊ in Fig. 7 is, for example, done by the send signal action
request tour in the center of Fig. 11, with the attached selection statement to
determine the receiver address.

It is the task of the code generator to create Java statements from the selec-
tion expression that compute the actual addresses of the targeted state machine
instances. As discussed above, select uses a set of positive and negative filters,
with an additional flag indicating whether only one matching state machine in-
stance should be returned or all of them. The generated Java method simply
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sends the set of state machine IDs through all of the filters specified in select
by using the Java code already expressed in the activity models. The standard
filters self and active are added accordingly. If a collaboration is started (such
as at point ➊) the code for the selection includes mechanisms to create new
state machine sessions or retrieves instances from a pool, which is not further
discussed here.

4.5 Mapping and Implementation of exists

In contrast to the select statement, exists does not cause a handover of control
flow. It is used to get information about properties of the state machines of the
system component. As such, it is used in guards of decisions. Decision nodes in
activities are mapped directly to choice pseudostates in state machines that have
an outgoing transition for each edge leaving the decision node (see [13]). The
model transformation simply has to copy the exist guards of the activity edges
to the corresponding UML state transitions. The implementation of exists for
execution in Java is similar to that of select, with the difference that a boolean
value is returned if one session ID passed all filters.

5 Concluding Remarks

Much research effort has been spent on the problem of deriving component
behaviors from service specifications [23,24]. In many approaches, the service
behavior is specified in terms of sequence diagrams or similar notations, which
are translated into component behaviors defined as state machines (see [25] for a
survey). It is also possible to derive message sequence scenarios from higher-level
specifications in the form of activity diagrams or Use Case Maps [26], and then
derive component behaviors in a second step. A direct derivation from Use Case
Maps was demonstrated in [27]. In this paper, however, we consider the direct
and fully automated derivation of component behavior from the specification
of collaboration behavior expressed as activities. While we presented the trans-
formation from single-session collaborations to state machines in [13], we have
extended the notation of activities and our transformation algorithm to handle
also collaborations executed in several sessions at the same time, as presented
in this paper. The advantage of our notation with select and exists is that they
can express the relations between sessions explicitly on an abstract level and
are still straight-forward to map to state machines that can be implemented
by our code generators [28]. The transformation algorithm is implemented as
an Eclipse plug-in and works directly on the UML 2.0 repository of the Eclipse
UML2 project.

We consider the specification of services in a collaboration-oriented way as a
major step towards a highly automatic model-based software design approach.
As depicted in Fig. 1, we hide the inter-component communication in the col-
laborations and activities while the intra-component communication is carried
out by linking activities with each other in partitions of surrounding activities.
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This makes it possible to express sub-services in separation, which facilitates the
general understanding of their behavior. Moreover, each collaboration models a
clear, separate task such that interaction-related problems like mixed initiatives
can be detected and solved more easily since only the problem-relevant behav-
ior is specified. The composition of collaborations profits from the input and
output nodes of activities which form the behavioral interfaces of the collabora-
tion roles. Different collaborations can be suitably composed by connecting their
nodes using arbitrary activity graphs.

Another advantage of collaboration-oriented specifications is the higher po-
tential for reuse. Usually, the sub-services modeled by collaborations can be used
in very different applications (such as for example the distributed status update
expressed by the collaboration Status Update). These sub-services can be mod-
eled once by a collaborations which can be stored in a library. Whenever such a
sub-service is needed, its activity is simply taken from the library, instantiated
and integrated into an enclosing collaboration. In our example, Status Update,
Button, Alarm and Position are good candidates for reuse.

An ongoing research activity is the development of suitable tools for editing,
refining, analyzing, proving and animating collaboration-based models. This will
be performed within the research and development project ISIS (Infrastructure
of Integrated Services) funded by the Research Council of Norway. The concept
of our approach will be proven by means of real-life services from the home au-
tomation domain. We consider collaboration-oriented service engineering as a
very promising alternative to traditional component-centered design and under-
stand the extensions for modeling and transforming sessions, presented in this
paper, as an important enabler.
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Leue, S., Systä, T.J. (eds.) Scenarios: Models, Transformations and Tools. LNCS,
vol. 3466, pp. 255–277. Springer, Heidelberg (2005)
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Abstract. This paper deals with the analysis and design of a computer
network simulator for educational purposes. The SOMT method based
on object-oriented analysis and SDL design has been used for that pur-
pose. The simulator developed allows protocol descriptions independent
of event management mechanisms and run-time network topology config-
uration without modifying the SDL description of the system developed.

1 Introduction

The research and teaching of protocols for communication networks requires sim-
ulation as a means for understanding and debugging their behavior. Simulation
is also required for protocol performance evaluation.

To develop a network simulator, notations for high-level behavior description
would be desirable, specially for the description of the protocols to be simu-
lated. These notations should allow the use of the same protocol description for
simulation, testing and automatic code generation of the network simulator.

Formal description techniques offer numerous advantages for the design and
evaluation of systems: a) well-defined set of constructs for an unambiguous sys-
tem description; b) support of hierarchical structuring of systems; c) a basis for
simulation, verification and implementation.

SDL [1] as an FDT further offers a graphical representation of the system
behavior, increasing the understandability of the system specification. Behavior
description is based on the concept of extended finite state machines (EFSM),
that form the basis of other notations in widespread use like UML statecharts [2].

Despite the advantages of SDL for the formal description of system behavior
and structure, it is not the ideal notation for all the phases of system develop-
ment, specially the analysis phase. SDL requires the specification of many details,
even for the simple models needed in the early phases of development, and does
not support the specification of relations (associations) between objects.

Object-oriented analysis is a well-known and popular technique for under-
standing a problem and analyzing a system. There are many different versions
of object-oriented analysis published as different methods in various books. The
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Object Management Group (OMG) has agreed upon a standard language for
object-oriented methods and tools, the Unified Modeling Language (UML) [2].
In spite of the advantages of UML for system analysis, the current version of
this language is not formally defined. Thus, UML system descriptions are not
completely unambiguous (see [3] for the current state of the development of a
mathematically formalized semantics definition for UML).

There are several software development methods that integrate object-oriented
analysis and SDL design. Among them are TIMe (The Integrated Method) [4] and
SOMT (SDL-oriented Object Modeling Technique) [5]. The intention is, of course,
to provide developers with the best of both worlds: the high-level description of
structure and behavior and ease of use of the object oriented analysis in the early
phases, together with the formal behavior description provided by SDL (that can-
not currently be obtained using UML) with simulation and validation facilities
provided by SDL tools.

This paper presents the experiences during the development of a network
simulation for educational purposes using the SOMT method. The rest of the
paper is organized as follows. Section 2 gives an overview of the SOMT method.
Section 3 is devoted to the analysis and design phases of the network simulation.
In Sect. 4 we discuss some aspects of the SOMT and other software development
methods. Finally, in Sect. 5 we discuss the conclusions of the paper.

2 The SOMT Method

The SOMT method [5] provides a framework that shows how to use object-
oriented analysis and SDL-based design together in a coherent way. The frame-
work is based on describing the analysis and design of a system as a number
of activities. Each activity deals with some specific aspects of the development
process. The work done in the activities is centered around a number of mod-
els, that document the result of the activities. As an integral part of the SOMT
method, guidelines are given for the transition between the different models. The
activities and the main models used in SOMT are illustrated in Fig. 1.

The current version of the SOMT method and the tool that supports it (Tele-
logic SDT) are based on SDL-96. Due to this fact, none of the SDL-2000 features
(such as UML class diagrams as part of an SDL system description) can be
used. This restriction affects the mapping of UML to SDL used in the activities
of the system and object design phases (see [5] for details). Anyhow, the UML
extensions of SDL-2000 are compatible with the mappings from UML to SDL-96
defined in the SOMT method.

ITU-T recommendation Z.109, SDL combined with UML [6], defines an ex-
tended subset of UML that maps directly to SDL and that can be used in com-
bination with SDL. This recommendation also includes the restricted subset of
UML to SDL mapping. The approach used in this Recommendation is based on
a subset of UML while the SOMT method is based on standard UML. This way
the SOMT method mappings are applicable to any UML class diagram and not
only to diagrams specifically designed for the Z.109 restricted subset of UML.
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Fig. 1. SOMT activities and main models

3 The SDL Network Simulator

This section presents the development process of a network simulator using the
phases and activities described in the SOMT method (see Sect. 2).

3.1 Requirements Analysis

In this phase, a textual requirement model is used as a source of information
about the problem to be solved and its domain. This information is usually
completed using other sources like books about the specific domain (for our
problem the references [7,8,9] have been used). This information is used to obtain
the rest of the models (use case model, requirements object model and data
dictionary).

The main features of the network simulator included in the textual require-
ments model are the following:

– simulator for educational purposes, mainly used for behavior and perfor-
mance analysis of data link layer protocols

– the protocol description used should be valid for both simulation and pro-
duction code generation
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– the protocol stack is composed of three layers: application, data link and
physical, but it could be easily extendable to include more layers

– the physical medium used should be a point-to-point link, but the simulator
must support other media without the need of modifications in the protocol
stack description

– the application layer is responsible for generating traffic for lower layers and
consuming data from them

– the data link layer protocols that can be selected for simulation are stop and
wait, sliding window without reject, sliding window go back n and sliding
window with selective reject

– the simulation modes are step by step (simulator stops after each event) and
continuous (simulator runs until user stops it)

From these requirements and the knowledge of the problem domain, the re-
quirements object model, as shown in Fig. 2, is obtained.

This model includes all the classes related to concepts external to the simu-
lator (user class) and internal but visible in the system boundary (simulatorIn-
terface class and classes related to the layers and protocols being simulated).

The simulationInterface class is the interface between the user and the simu-
lator, and allows the user to configure the simulation parameters and start, stop,
continue and abort a simulation. Furthermore, all the events produced during
the simulation and the values of the performance evaluation parameters are sent
to the user.

As a result of the activities of this phase, several message chart diagrams
showing scenarios of system element interactions are also obtained. One of these
interactions, corresponding to the simulation configuration, is shown in Fig. 3.

Note that the user is not aware of the communications among the internal
modules of the simulator. Thus, from a requirements analysis point of view, the
user and the simulatorInterface are the only classes involved in the simulator
configuration scenario.

3.2 System Analysis

One of the main goals of this phase is to obtain the internal structure description
of the system. This structure is described in the analysis object model, as shown
in Fig. 4.

In the analysis object model all the classes visible in the system boundary of
the requirement object model are completed by including attributes and meth-
ods. Furthermore, all the external classes are not included (simulator interface
and user classes) and some new classes needed for the simulation to fulfill its
requirements are included (timing class).

The timing class is responsible for receiving events (and their timestamps)
from the stack protocol layers and the physical medium, ordering them by
timestamp and controlling the simulation clock. Another function of this class
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Requirements object model 1(1)
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Fig. 2. Logical structure for the requirements analysis phase

is to notify that a protocol event has been produced (the simulation clock has
been advanced to the value of the event timestamp).

In the analysis object model some system structure simplifications can also be
observed: protocolStack and computer classes have been merged into one class
(protocolStack) because of the fact that every computer simulated only uses one
protocol stack according to the simulator requirements. This simplification leads
to a simpler SDL system structure (see Sect. 3.3).
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User Simulator_interface

Start_simulation

exc params_error

MSC Config_simulation

Change_simulation_params

(AP_params, DL_params, medium_params)

Ack

Fig. 3. Example of a scenario: Simulator configuration

3.3 System Design

In this phase the SDL system structure and the interfaces among the system
parts are defined using mainly the information described in the analysis object
model.

The rules described in [5] are used to obtain a description of the application
architecture using SDL system and/or block diagrams. These rules can be au-
tomatically applied by using the paste as concept of the CASE tool used. This
way, a UML concept, for example a class in the analysis object model, can be
pasted as the corresponding SDL concept according to the rules (in this case, a
block type, a process type or a signal definition for the class operations). With
this concept, block types and process types structure, and signal definitions can
be automatically obtained.

Applying the aforementioned rules to the analysis object model of Fig. 4,
the class protocolStack is translated into a block type protocolStack contain-
ing three process types, corresponding to the classes application, datalink and
physical. The process types corresponding to PHY Protocol, DL Protocol (and
its subclasses) and AP Protocol classes should also have to be defined inside the
same block type as the process types modeling layers because of the relationships
(which imply communications) among them. There is also a control process type
responsible for instantiating the process type corresponding to the selected data
link protocol.

To simplify the SDL system structure we have added some new rules to the
mapping rules proposed in the SOMT method. According to SOMT rules, two
associated classes (A and B) are translated into two SDL process types (PT A
and PT B) connected by routes and defined inside the same block type. If one of



192 M. Rodŕıguez and J.M. Parra
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Fig. 4. Logical structure for the system analysis phase

the associated classes (B) has subclasses (Bi, i=0,1, . . . ) this rule will lead to a
block type structure with several interconnected process types: one process type
(PT Bi) for each subclass, one control process type (PT Control B) responsible
for instantiating the PT Bi process types, and one process type for the A class
(PT A).
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USE ProtocolStack; USE Application;USE DataLinkLayer;USE PhysicalPhysMediumSignals; 
USE physicalMedium;USE Timing; USE CommonSignals; USE TCPIPComm;

system twoStacksSimul 1(1)

SIGNAL stepByStepMode(Boolean), 
stackParams(APParams,DLParams),
mediumParams(medParams),
end, end_ACK, Ack, Nack;/* include random.pr */
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Fig. 5. SDL system structure: simulator with static structure

If the multiplicity of the association is “one” for the superclass (B), only one
of the process types corresponding to the subclasses will be instantiated.

In this case, the SDL structure will be simplified if the process types mod-
eling the superclass (B) and the subclasses (Bi) are converted into procedures
(Proc B and Proc Bi, respectively), and the union of the signals of their signal
sets are added to the control process PT Control B. This process type will also be
responsible for calling the procedure corresponding to the instantiated subclass
(according to the system configuration). The procedures modeling the subclasses
include the same finite state machine description as the previous process types
PT Bi, and with the same signal handling, thus, there are no differences in the
behavior of the PT Bi process types and the behavior of the control process
type that includes the procedures. This simplification is valid for every system
fulfilling the aforementioned conditions.



194 M. Rodŕıguez and J.M. Parra

The system obtained by applying the proposed mapping of the SOMT method
and the new rules added can be seen in Fig. 5 (system structure for a simulator
configured for a network with two computers communicating through a point-
to-point link) and Fig. 6 (protocolStack block internal structure).

block type ProtocolStack 1(1)
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Fig. 6. protocolStack block structure

This first version of the simulator consists of one SDL system including blocks
for the protocol stacks, physical medium and timing module. Due to the lack
of dynamic block instance creation and connection of their channels to the en-
vironment in SDL-96 (the version supported by the SDL CASE tool used), the
simulator network topology is fixed when the SDL system structure is defined
in this version of the simulator (see Fig. 5).
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The simulator system consists of several blocks:

– one net block, containing a process in charge of the configuration of the
protocol stacks (data link protocol selected, for example), physical medium
(propagation delay, for example) and timing module;

– one timing block containing a process for management of simulator events;
– one link block, containing a process that models the physical medium;
– two blocks of type ProtocolStack, each one including processes modeling the

three protocol layers used in every computer of the network.

The application of the modified rules of the UML-SDL mapping to the sys-
tem structure cause the process types modeling protocols to be converted into
procedures. These procedures are called from the corresponding control process
type.

USE CommonSignals;
USE PhysicalPhysMediumSignals;
USE ProtocolStack;
USE Applicacion; USE DataLinkLayer;
USE TCPIPComm;

system protocolStackSystem 1(1)

Signal IPConf(Charstring, Integer);
signallist IPConfSig = IPConf;

stack: TCPIPConnectedProtocolStack

TCPIPConnectedProtocolSTack

stackConfig
(stack_net)

(net_stack)

STACK_NETStatistics

(STStats)
Statistics IPConfBG

IPConfC

(IPConfSig)

CLOCK

Sync,
DLTimer

STACK_TIM STACK_ME
Medium

TX_DataRX_Data

Fig. 7. SDL system structure: protocolStack system

Due to the fact that process types corresponding to layer classes are only
responsible for configuring layer protocols, each of these has been merged with
the control process type in charge of instantiating the layer protocol to be ex-
ecuted. The structure of the block type protocolStack resulting from applying
these simplifications can be see in Fig. 6. A brief description of the functions of
the main process types can be see in Sect. 3.4.
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USE PhysicalPhysMediumSignals; 
USE physicalMedium;USE Timing; USE CommonSignals; USE TCPIPComm;

system networkSimulationControl 1(1)
SIGNAL stepByStepMode(Boolean), 
stackParams(APParams,DLParams),
mediumParams(medParams),
end, end_ACK, Ack, Nack;

/* include random.pr */
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Fig. 8. SDL system structure: networkSimulationControl system

To allow a dynamic network topology configuration the SDL system has to
be decomposed into two SDL systems. This second version of the simulator con-
sists of two types of SDL systems: protocolStackSystem, shown in Fig. 7, that
contains an instance of the protocolStack block type (in fact, a modified version
of the block type that includes the aspects related to the TCP/IP communica-
tion with other SDL systems), and networkSimulationControl, shown in Fig. 8,
that contains instances of the physicalMedium, timing and network (used for
configuration and signal exchanging with other systems using TCP/IP) block
types.
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With the new structure for the simulator, the user (through the graphical
interface) executes the networkSimulationControl system which is responsible for
the execution and communication with the protocolStack systems (there will be
as many protocolStack systems as computers in the network topology simulated).

For the communications among the SDL systems the TCP/IP communication
module of the Telelogic SDT 4.6 tool has been used. To encapsulate the details
of these communications and avoid changes in the protocol description a new
version of the protocolStack block type (TCPConnectedProtocolStack) has been
developed. This block includes a new version of the control process type that
sends, during the initialization phase, the (dynamically assigned) IP address and
port used by the protocolStack system to the control system. The IP address
and port of the control system are read from a configuration file and are used
for routing every signal sent to the environment of the protocolStack system.

Furthermore, the control process type of the networkConfigBlock have been
redefined to be also in charge of storing the mappings among protocolStack sys-
tem identifiers and their IP address and port, and for routing every signal sent
to the control system environment using these mappings. The routing is done by
adding the IP address and port of the destination system to every signal, and
using the internal routing functions of the Telelogic tool.

3.4 Object Design

The main task of this phase is to define completely and unambiguously the
SDL system, including the behavior description of all the process types. For
this description the information included in the state charts related to the corre-
sponding process types (if defined) can be used. Another source of information is
the MSCs descriptions of scenarios. The complete process type behavior should
be defined as the union of the behaviors of the corresponding class in all the
scenarios it belongs to.

Process type behavior will also be affected by the textual requirements of the
requirements analysis phase. For example the requirement “the protocol descrip-
tion used should be valid for both simulation and production code generation”
will affect the behavior description of the protocol procedures (aspects related
to simulation event management should be isolated from the protocol behavior).
To fulfill this requirement, auxiliary procedures for event and clock manage-
ment (addEvent, eventManagement and releaseEvenList) have to be used in the
protocol description (different versions of these procedures will be used for sim-
ulation and production code generation without the need to modify the protocol
description).

Every process modeling a protocol stack layer (or the physical medium) sends
its events to the Timing block type using the remote procedure eventManage-
ment (exported by the process of this block type).

In the case of production code generation, the eventManagement procedure
should be modified to use timers that trigger the appropriate signals (sync, time-
out or output sig) instead of a simulated clock, and to be a local called procedure
in every protocol stack block. Furthermore, the real physical medium should be
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substituted for a physicalMedium block, every protocol stack system will be
directly connected to this medium, a local configuration procedure in every pro-
tocol stack block should be substituted for block type networkConfigBlock and
the Timing block type will not be needed.

The main functions of the processes obtained in this phase are described in
the following sections.

Clock and event management: the timing module. The timing module,
modeled by the TimingBlock block type and its eventMonitor process type is
mainly responsible for:

– simulation clock management;
– receiving the events (including their timestamp, present or future time) from

other processes and sending the appropriate associated signal (if any) when
the clock is advanced to the timestamp value;

– sending the sync signal to the application layer – this signal triggers the
packet generation;

– sending the timeout signal to the data link layer – this signal triggers the
frame retransmission

– sending the output sig signal to the physical medium – this signal triggers
the sending of frame bytes to the destination stack physical layer;

– notifying the events to the user.

To fulfill these requirements this module has to receive all the events of the
layers and physical medium, order them by timestamp, advance the simulation
clock to the earliest event and send the signal corresponding to that event (if
any) to the corresponding layer or physical medium.

The application layer. The process modeling the application layer is respon-
sible for generating packets for the data link layer according to the configuration
(minimum and maximum size and message rate). The generation of one packet
and its sending to the data link layer (using the send packet output signal) is
triggered by the input of sync signal from the timingBlock block type.

This process is also responsible for receiving packets from the data link layer
(using the receive packet input signal).

The data link layer. The process modeling the data link layer is responsible
for configurating the parameters of the selected protocol and call the procedure
corresponding to this protocol. The main signals used by this process are:

– output signals:
• send frame for sending a frame to the physical layer;
• receive packet for sending a packet to the application layer;

– input signals:
• send packet for receiving a packet from the application layer;
• receive frame for receiving a packet from the physical layer;
• DLTimer : sent to this layer by the timingBlock block type when a frame

timer timeouts.
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inherits dataLinkProtocol;

procedure stopAndWait 4(5)
waitingForEvents
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Fig. 9. Stop and wait procedure

The physical layer. The process modeling the physical layer is responsible for
receiving frames from the data link layer (using the input signal send frame) and
sending them to the physical medium (using the output signal TX data). It is
also responsible for receiving frames from the physical medium (using the input
signal RX data), checking if the frames have a destination address corresponding
to the computer the layer belongs to (otherwise they are discarded), and sending
them to the data link layer (using the output signal receive frame).

The physical medium. The process modeling the physical medium is in charge
of the following functions:

– receiving frames from a physical layer (using the input signal TX Data);
– calculating the frame arrival time to the destination computer and notifying

this event to the timing module;
– sending frames to a physical layer (using the output signal RX Data) when

the input signal output sig is received from the timing module (indicating
that the clock value equals the arrival time of the frame).
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Example of protocol description: stop and wait. An example of a data
link layer protocol procedure, stop and wait, can be seen in Fig. 9. This figure
shows the part of the protocol description corresponding to the event of a frame
reception. The transition is triggered when the procedure receives a signal indi-
cating that a frame has arrived from the physical layer. This signal includes as
parameters the frame and its arrival time. The first task is to check if the frame
has arrived corrupted by comparing the received CRC with the CRC calcu-
lated using the received frame. If the frame is corrupted, it should be discarded,
notifying this event to the user through the timing block using the addEvent,
manageEvent and relaseEventList procedures.

If the frame is not corrupted, the procedure checks the frame type. If the type
is an acknowledgment the next step is to check its frame number. If this number
is not the expected one, the frame is discarded and the event notified to the
timing module. Otherwise, the following tasks are executed: the frame reception
is notified, the application layer is enabled, the event of timer cancellation is
notified (and timer effectively canceled) and the expected sequence number for
the next frame to be sent is updated.

As shown in Fig. 9 all the main tasks in the protocol description are related to
the protocol behavior and not to the event management module of the simulator.
The only event management related tasks needed are the notification of events
to the timing module using the eventManagement procedure.

4 Discussion

4.1 Software Development Methods

For the development of complex telecommunications, (soft) real-time or reactive
systems in general, a promising combination is to use [4]:

– object orientation as a common approach to analysis, design and implemen-
tation, with concurrent processes as objects;

– interaction scenarios for the specification of communication between users
and systems (use cases) and between objects of systems;

– state/transition based specification of behavior of individual objects.

There are software development methods that support this combination by
using the OMG standardized language UML, like the Unified Process Model [10].
The main drawback of these methods is the lack of formal semantics definition
of UML.

Another group of methods supports the same combination by the integrated
use of UML for object model analysis, MSC for interaction scenarios, and SDL
for specification and design of behavior. Among this group of methods the SOMT
method [5], and the TIMe method [4] can be found.

Both methods distinguish between analysis and design activities but the in-
ternal sub-activities are different. In the TIMe method, analysis activity consists
of two main activities: domain analysis (for identifying concepts of the domain)
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and requirements analysis (for identifying properties of the system to be devel-
oped). These activities are included in the requirements analysis activity of the
SOMT method (and in part of the system analysis activity), but without a clear
difference.

Roughly speaking, the TIMe design activity corresponds to the SOMT system
design (for specifying system structure) and object design (for specifying system
objects’ behavior), and the TIMe implementation and instantiation activities to
the SOMT implementation activity (without a clear difference between imple-
mentation and instantiation concepts).

In a general sense, the TIMe method describes the activities and concepts
involved in system development in a more rigorous way than the SOMT method,
and introduces useful mechanisms for system development (e.g. frameworks to
simplify the reutilization of designs). Despite all these advantages, we think it is
more complex and difficult to apply the TIMe method to projects of small size,
than the SOMT method.

The main drawback of the TIMe method is the lack of tool support for ap-
plying it to a project (the SOMT method is supported to a great extent by
Telelogic’s SDT tool).

4.2 Experiences in Using the SOMT Method

In this section we present our experiences in using the SOMT towards the de-
velopment of the network simulator.

The use of the method has proven to be useful to force the developers to think
about what is the problem to be solved and its domain, and to represent this
knowledge with an appropriate notation, before thinking how to solve it.

The main problems we have found in using the method are due to the change
of notations from UML to SDL between analysis and designs activities (though
this change is partially supported by the CASE tool used).

Associations between active objects in UML can not be directly expressed in
SDL, and usually are only translated into routes communicating the SDL process
modeling the objects. Although this is the translation proposed by the SOMT
method, it is not supported by the CASE tool.

The application of translation rules from UML to SDL is supported in Tele-
logic SDT by the paste as concept (a UML element is copied and pasted as an
SDL concept, and only the valid options for this translation can be selected).
Nevertheless, the paste as mechanism can only be applied element by element
and not to a group of elements simultaneously. This drawback limits the number
of UML-SDL translation rules that can be applied automatically (for example,
the gate definition of a block type corresponding to an aggregation can not be
obtained automatically).

It is not clear what is the best structure in SDL to represent a UML ag-
gregation in which some of the part classes are associated with other classes.
There are several options: a) trying to keep the aggregation structure; in this
case, we have to define one block type to model the aggregation (containing the
process types corresponding to the part classes) and another one containing the
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associated classes; b) include the associated classes in the block type modeling
the aggregation. The first approach is closer to the structure of the UML model
while the second one allows a simpler SDL structure.

5 Conclusions

In this paper we have described the analysis and design of a network simulator for
educational purposes using the SOMT method, that integrates object-oriented
analysis with SDL design.

The simulator developed fulfills all the initial requirements, including the need
of protocol behavior description independent of the simulator event management
mechanism. This requirement has been fulfilled using auxiliary procedures to no-
tify events to the timing module. This procedures can be adapted for generating
production code of the protocols without the need of modifying the protocol
description.

Furthermore, a new rule for the UML analysis model to SDL system structure
mapping has been proposed, based on the use of procedures instead of process
types. This rule simplifies the SDL system structure by reducing the number of
processes and signal routes.

Due to the lack of dynamic block creation in the SDL version used, a new
structure for the simulator has been proposed, consisting of one SDL system for
simulation control and physical medium management, and several SDL systems
modeling the protocol stack of every computer belonging to the network. The
new structure allows different network topologies without the need of modifying
the SDL system definitions.
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Abstract. UML supports a multi-view modeling approach for over-
coming software complexity. It consists of several diagrams, which al-
low for considering software systems from different perspectives: struc-
ture, behavior and deployment. However, this multi-view approach faces
the challenging issue of consistency. Moreover, when UML is used for
real-time systems, through its specialized profiles such as UML/SPT for
instance, the consistency issue becomes more complex. New aspects, rel-
evant for real-time systems design, should be taken into consideration.
These include concurrency, time constraints and schedulability. In this
paper, we present a consistency framework for UML/SPT models. This
framework addresses incrementally the various aspects of consistency in-
cluding syntactic, semantic, concurrency-related and time consistency. In
this framework, we introduce an approach for checking time consistency
between statecharts and sequence diagrams using schedulability analysis.

1 Introduction

UML [16] is nowadays seen as the de facto standard software modeling language.
UML consists of a multitude of diagrams used to model the structure, the be-
havior and the deployment of the system under consideration. It is well known
that these different views may lead to inconsistencies. Moreover, UML is also
used to model real-time systems. This can be done using the UML profile for
real-time such as the OMG standard UML/SPT [15] or the upcoming standard
MARTE [14]. In the case of real-time system modeling, new aspects need to
be taken into account, namely concurrency, time constraints and schedulability.
These aspects may contribute to worsen the consistency issue.

UML’s built-in consistency mechanisms are limited to a set of well-formedness
rules expressed in OCL in the metamodel. Higher level consistency concepts are,
however, not accounted for at the language level. Considering the complexity
of a UML/SPT model, which is composed of several UML diagrams and which
captures in addition aspects such as concurrency and time constraints using
appropriate stereotypes defined in the profile, it is difficult to provide one def-
inition of consistency. An incremental approach to consistency of UML/SPT
models that distinguishes the syntactic and semantic levels is more appropriate.

E. Gaudin, E. Najm, and R. Reed (Eds.): SDL 2007, LNCS 4745, pp. 203–224, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In this paper, we are interested in inter-diagram consistency in a UML/SPT
model. The contributions are twofold. First, we present a consistency frame-
work for UML/SPT models. In this framework, we define the consistency of
UML/SPT models in terms of syntactic consistency and semantic consistency.
The latter is defined further in terms of behavioral consistency, concurrency-
related consistency and time consistency. Second, we focus on time consistency
of behavioral diagrams of UML/SPT models, namely statecharts and sequence
diagrams. We introduce an approach that relies on schedulability analysis. In
order to do so, we show how a UML/SPT-based schedulability analysis model
is generated from statecharts and sequence diagrams. Our transformation ap-
proach initially presented in [6] is then used to enable appropriate schedulability
analysis techniques and consequently check time consistency of the model.

The rest of this paper is organized as follows. In Sect. 2, we provide a brief
overview of the UML profile for real-time systems and we illustrate it with a model
of the generalized railroad crossing system. In Sect. 3, we introduce a framework
for an incremental definition of consistency for UML/SPT models. In Sect. 4, we
provide formal notations and definitions of UML sequence diagrams, statecharts
and behavioral consistency of UML/SPT models. In Sect. 5, we present an ap-
proach for checking time consistency of UML/SPT models using schedulability
analysis. We review the related work in Sect. 6 and conclude in Sect. 7.

2 Overview of UML/SPT

UML/SPT [15] is an OMG standard UML profile for the modeling and analysis
of real-time systems. It enables the modeling of resources, time, and concur-
rency. In addition, UML/SPT supports schedulability and performance analy-
sis. UML/SPT provides a set of stereotypes that can be used to annotate UML
diagrams with quantitative information. This enables the prediction of key prop-
erties at early stages of a development process using quantitative analysis.

The structure of the UML/SPT
profile, illustrated in Fig. 1, is
composed of a number of sub-
profiles. The core of the profile
represents the General Resource
Model framework. This is further
partitioned into three sub-profiles:
RTresourceModeling for the basic
concepts of resource and quality
of service; RTconcurrencyMod-
eling for concurrency modeling;
and RTtimeModeling for the time
concept and time-related mech-
anisms. Furthermore, UML/SPT
is composed of extensible analysis

<<profile>>
RTresourceModeling

<<profile>>
RTConcurrencyModeling

<<profile>>
RTtimeModeling

<<import>> <<import>>

General resource Modeling Framework

<<profile>>
SAProfile

<<profile>>
RSAprofile

<<profile>>
PAProfile

<<import>> <<import>>

Analysis Model

<<import>>

<<import>>

Fig. 1. The Structure of UML/SPT Profile
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sub-profiles, including: PAprofile for the performance analysis modeling and
SAprofile for the real-time schedulability analysis modeling.

UML/SPT defines for each of these sub-profiles a domain model encapsulating
the main concepts involved in time, concurrency, performance and schedulabil-
ity modeling. These domain models are then mapped to UML through a set
of stereotypes. In the following, we illustrate UML/SPT with a model for the
Generalized Railroad Crossing System (GRCS) [7].

This system controls a gate in a critical region to protect a railroad crossing
as depicted in Fig. 2. A set of trains can traverse the crossing in parallel using
different tracks. The system uses sensors to detect an entering/exiting train
to/from the critical region. The GRCS should satisfy certain time requirements
as depicted in Fig. 3. The fastest train takes tapproach to reach the gate after
entering the critical section and it takes tcrossing to cross the gate section.
A closed gate takes tup to open fully while an open gate takes tdown to close
completely.

Gate

Critical Section

tra
c
k
s

Fig. 2. Generalized Railroad Crossing System

Critical Section

tcrossing

tdowntup

tapproach

Gate

Fig. 3. Generalized Railroad Crossing Time Constraints
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<<CRConcurrent>>

TrackController
TrackHandler

<<CRConcurrent>>

GateController
Gate

Sensor
N N

1

1

1

<<RTtimer>>

clock

1

1

Fig. 4. Generalized Railroad Crossing Structure View

Structure View: The class diagram in Fig. 4 shows the static structure of the
design. The system is composed of two concurrent entities TrackController
and GateController, which are stereotypes of �CRconcurrent�. They use
the passive objects, TrackHandler and Gate, respectively. Clock is a timer that
is a stereotype of �RTtimer� and used by the TrackHandler entities to keep
track of time progress. The entity Sensor represents the sensors.

Behavior View: The most important interactions between the entities defined
in the system structure along with their time requirements are given in the
sequence diagrams shown in Figs. 5, 6, 7 and 8.

Sensor
<<Crconcurrent>>

TrackController
TrackHandler

inputSensor

enter

exit

<<RTaction>>

{Rtduration=(tapproach+tcrossing,’ms’)}

Fig. 5. Entering Train Scenario
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TrackHandler

<<RTtimer>>

clock

<<RTevent>>

{RTat=(tapproach-tup-tdown,’ms’)}

timerEvent1

<<RTset>>

{RTtimerPar=(tup,’ms’)}

watchApproach

<<RTevent>>

{RTat=(tup,’ms’)}

timerEvent2

<<RTset>>

{RTtimerPar=(tdown,’ms’)}

watchImminence

<<RTevent>>

{RTat=(tdown,’ms’)}

timerEvent3

<<RTset>>

{RTtimerPar=(tcrossing,’ms’)}

watchCrossing

<<Crconcurrent>>

GateController

close

<<RTevent>>

{RTat=(tcrossing,’ms’)}

timerEvent4

<<RTnewTimer>>

{RTtimerPar=(tapproach-tup-tdown,’ms’)}

createTimer

<<Crconcurrent>>

TrackController

exit

Fig. 6. TrackHandler Timed Behavior

TrackHandler
<<Crconcurrent>>

GateController

close

Gate

<<RTaction>>

{Rtduration=(tdown,’ms’)}goDown

Fig. 7. Gate Closing Scenario
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<<CRconcurrent>>

TrackController

<<CRconcurrent>>

GateController

open

Gate

<<RTaction>>

{Rtduration=(tup,’ms’)}goUp

Fig. 8. Gate Opening Scenario

InCritSec Approach

enter / creatTirmer

<<RTnewTimer>>

{RTTimerPar=(tapproach-tup-

tdown,’ms’)}

timerEvent1 /watchApproach

<<RTset>>

{RTTimerPar=(tup,’ms’)}

Imminent

timerEvent2

/ watchImminence

<<RTset>>

{RTTimerPar=(tdown,’ms’)}

Crossing

timerEvent3

/ watchCrossing,

close

<<RTset>>

{RTTimerPar=(tcrossing,’ms’)}

timerEvent4

/ exit

Fig. 9. TrackHandler State Machine

The detailed design is modeled using UML statecharts. These describe the
internal behavior of each entity. The statecharts corresponding to the Track-
Controller, TrackHandler, GateController and Gate are depicted in Figs. 10,
9, 11 and 12 respectively.

3 Consistency of UML/SPT Models

An UML/SPT design model of a real-time system is an UML model that cap-
tures in addition concurrency and time constraints. As such, it is composed of
several UML diagrams annotated with stereotypes to describe concurrency and
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NoTrain TrainInCSect

sensorInput(#trk)/

nbTrain++,

trackHdl[#trk].enter

sensorInput(#trk)/

nbTrain++,

trackHdl[#trk].enter

exit / nbTrain--

[else][nbTrain==0] / open

init

Fig. 10. TrackController State Machine

GateOpen GateClosed

Close/GoDown
init

Open/GoUp

Fig. 11. GateController State Machine

Up Down

GoDown / MoveDown
init

GoUp / MoveUp

<<RTaction>>

{RTDuration=(tdown,’ms’)}

<<RTaction>>

{Rtduration=(tup,’ms’)}

Fig. 12. Gate State Machine

time constraints. It is not straightforward to provide a single and comprehen-
sive definition for consistency of UML/SPT models. The consistency issue of
these models can be summarized as shown in Fig. 13. We distinguish between
intra-diagram and inter-diagram consistencies.

Intra-diagram consistency concerns one type of diagrams, also called one view
of the system. For such kind of consistency we are concerned for instance with
the well-formedness of the diagrams, which can be checked using UML well-
formedness rules expressed in OCL in the metamodel. These rules help in ob-
taining UML diagrams that are well-formed with respect to the abstract syntax.
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Set of Sequence Diagrams
[Well-formedness]

Are the diagrams behaviorally consistent?
Are they time consistent?

Set of Statecharts
[Well-formedness]

Are the diagrams behaviorally consistent?

Set of Class Diagrams
[Well-formedness]

Syntactic Consistency

Are they semantically consistent?

•
•
•

Behavioral consistency
Concurrency-related consistency
Time consistency

Fig. 13. Consistency of UML/SPT Models

The semantic consistency of each view is important. This is usually referred
to as (semantic) correctness, and is particularly important in the case of behav-
ioral diagrams like sequence diagrams or statecharts. This kind of consistency is
well studied by formal verification community that investigated thoroughly the
behavioral correctness and the timing correctness of such diagrams.

Inter-diagram consistency (the focus of this paper) can be syntactic or seman-
tic, in a similar way to intra-diagram consistency. Semantic consistency includes,
in addition to the behavioral consistency, concurrency-related consistency and
time consistency.

– Syntactic Consistency: This consistency is an inter-diagram static prop-
erty, which goes beyond the well-formedness of each individual diagram. The
syntactic elements used in the overlapping diagrams should be coherent and
compatible. For instance, it can be defined for sequence diagrams and state-
charts composing a UML model [10]. Several approaches in the literature [8]
address the consistency of a UML model at the syntactical level.

As an example, the model described in Sect. 2 is not syntactically con-
sistent. In the sequence diagram depicted in Fig. 7, TrackHandler sends
a message close to GateController. This requires a link between two in-
stances of these classes to enable this communication. There is no association
between these classes in the class diagram. Consequently, the class diagram
and the sequence diagram in Fig. 7 are syntactically inconsistent.

– Semantic Consistency: The semantic consistency is a dynamic property.
We distinguish the behavioral consistency for general-purpose UML models
from concurrency-related consistency and time consistency, which are spe-
cific to UML/SPT models.
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• Behavioral Consistency is defined for the diagrams used to describe the
dynamic behavior of systems. These are mainly the sequence diagrams
and statecharts, which capture two different perspectives of the system
behavior. Indeed, a sequence diagram describes a partial behavior of the
system, which is a particular run/execution of the system. On the other
hand, a statechart is a comprehensive description of the behavior of a
single object/class. Consequently, a set of sequence diagrams and state-
charts model a consistent behavior if the interactions modeled by each
sequence diagram can be generated by a particular run of the statecharts
associated with the objects involved in the sequence diagram. This can
be checked for example by mapping the statecharts and the sequence
diagrams to a timed automata formalism [9].

• Concurrency-related Consistency comes on top of behavioral consistency
to capture issues specific to concurrency in UML/SPT models. It is re-
lated to the concurrency choices that are expressed in UML/SPT models.
Concurrency design choices are important to use system resources effi-
ciently in order to satisfy time constraints. However, concurrency is likely
to lead to issues such as deadlock and other race conditions. Concurrency
modeling with UML/SPT is done with stereotypes defined in the RTCon-
currencyModeling package. The semantics of these stereotypes is defined
by the concurrency domain model. We provided a formal definition for
this domain model using timed automata in [5]. This enables the usage
of model checking techniques for detecting concurrency related problems
in UML/SPT models.

For instance, let us consider the model discussed in Sect. 2 with
two tracks. Figure 14 shows the timed automaton corresponding to the
class TrackController. This timed automaton is generated using the
techniques introduced in [5]. UPPAAL [11] shows that the CTL expres-
sion (1) is satisfied. This expression models the possibility that a train
is crossing the gate section while the gate is open.

∃♦((TrkHdl1.Crossing or TrkHdl1.Crossing) and gt.Up) (1)

This problem is due to a flawed concurrency design choice where the
entities TrackHandler are passive objects. They use the thread of control
of their associated concurrent unit, TrackController, to proceed and
meanwhile the latter is blocked (i.e. in the wait state). Any inputsensor
received is then missed and consequently the train can cross the gate after
the TrackControllerhas send an open message to the GateController.
TrackHandler should then be concurrent.

• Time Consistency comes on top of behavioral and concurrency related
consistencies. It is related to time constraints expressed using UML/SPT
time stereotypes. We distinguish two kinds of time consistency in
UML/SPT models: The logical time consistency of sequence diagrams,
and system’s time consistency including sequence diagrams, statecharts
and deployment constraints. We elaborate on time consistency in Sect. 5.
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Wait

nTrain != 0

nTrain==0open!

exit2? nTrain--
TC_service == 2 enterTrack2!

exit1? nTrain--

TC_service==1 enterTrack1!
TC_receive!

nTrain++

Fig. 14. Track Controller with Sequential Track Handlers

4 Formal Notation and Definitions

We present in this section a formal notation for the UML behavioral diagrams,
sequence diagrams and statecharts. Similar ones have been presented in the liter-
ature [10,12]. We use this notation to define formally the behavioral consistency
between a set of sequence diagrams and a set of statecharts.

Definition 1. A sequence diagram SeqD is a tuple <O, E, V, Label> where:

– O is the set of objects.
– E = S ∪ R is the set of events.
– V ⊆ S × R
– Label : V → MNames is a labeling function and MNames is a set of mes-

sages names.

A sequence diagram describes a sequence of message events. Each message m is
associated with two causally ordered events, a send event, send(m) ∈ S, and a
reception event, receipt(m) ∈ R, respectively. Semantically, a sequence diagram
is seen as a partially ordered set of events. In the following Object : E → O is a
function mapping an event to the object on which its occurs.

Definition 2. The semantics of a sequence diagram SeqD <O, E, V, Label>
is defined by the structure (E, �) where � is defined as follows:

– ∀ (ei, ej) ∈ V ⇒ ei � ej

– ∀ei, ej ∈ E and Object(ei) = Object(ej) and t(ei) ≤ t(ej) ⇒ ei � ej

We define the function ΠSeqD
o : E∗ × O → E∗ as the projection of the sequence

of events induced by a sequence diagram SeqD on an object o ∈ SeqD.O. This
function yields a totally ordered set of events because all the events associated
to one object are ordered.

In the following, we consider a formal definition of a simple statechart. This
definition omits, for the sake of simplicity, other features of statecharts such as
sub-states, pseudo-states.
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Definition 3. A statechart SC is a tuple <S, E, A, T> where:

– S is the set of states.
– E is the set of events.
– A is a set of actions.
– T : S × E × A → S a transition relationship.

The operational semantics of a statechart is defined informally in the UML meta-
model [16]. Moreover, there are several proposals in the literature for the formal
description of the UML statechart semantics [17]. In the following, we assume
that the predicate IsARun(sc, se) is true if the events sequence se corresponds
to a valid transition sequence of the statechart sc.

Using the previous notation, we can define the behavioral consistency between
a sequence diagram and a set of statecharts as follows:

Definition 4. A sequence diagram SeqD and set of statecharts SC = {o.sc|o ∈
SeqD.O} model a consistent behavior if and only if:

∀ o ∈ SeqD.O, IsARun(o.sc, ΠSeqD
o )=True

Consequently, the behavioral consistency between a set of sequence diagrams
and a set of statecharts can be defined as follows:

Definition 5. A set of sequence diagrams SEQD = {SeqD1, SeqD2, .., SeqDn}
and a set of statecharts SC = {Sc1, Sc2, ..., Scm} define a consistent behavior if
and only if each sequence diagram SeqDi ∈ SEQD and the set of statecharts
SC′ = {o.sc ∈ SC|o ∈ SeqDi.O} define a consistent behavior.

5 UML/SPT Time Consistency

In this section, we present an approach for checking the time consistency of UML
statecharts against a set of sequence diagrams capturing the time constraints.
We assume that each sequence diagram models a system end-to-end transaction
in response to an external event. The main idea underlying our approach is to
use schedulability analysis as a means to check the time consistency. Indeed, a
sequence diagram captures a specific interaction subject to a specific time con-
straint. As a result, a sequence diagram induces a sequence of state transitions
in each statechart. This transition sequence involves a sequence of computa-
tions/actions. The statecharts are consistent with a set of sequence diagrams
if and only if all the computations executed by the statecharts and induced by
the different sequence diagrams are schedulable in the context of a particular
deployment environment. This means that in a such deployment environment,
in the worst-case scenario, all these computations can be completed within the
deadlines resulting from the time constraints.

Our approach relies on using an appropriate schedulability analysis technique.
In order to do so, we generate a UML/SPT-based schedulability analysis model
from the statcharts, the sequence diagrams and a deployment model. The latter
describes platform-dependent information such as CPU characteristics, shared
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resources, threads, priorities, etc. This information allows the determination of
the worst case execution time (WCET) of the different actions in the deployment
environment using techniques such as [2]. The generated UML/SPT model is an
instance of the schedulability analysis domain model defined in the SAprofile
package of UML/SPT. This model captures the system external events and the
corresponding system responses. These are composed of the actions executed by
the different objects and that are allocated to the different available threads.
This model can then be supplied for schedulability analysis. We have defined
in [6] an approach for transforming UML/SPT models into task models suitable
for schedulability analysis. In the following, we elaborate on the main parts of
our approach outlined in Fig. 15.

UML Statecharts

(detailed design)

UML Sequence

Diagrams

+ Time constraints

Model Generation

Procedure

Deployment

Model

UML/SPT-based

Schedulability

Model

Schedulability

Analysis

Time Constraints

Validation

Fig. 15. UML/SPT Model Time Consistency

5.1 Logical Time Consistency Validation

The time constraints captured using sequence diagrams should be logically con-
sistent. This is necessary otherwise no behavior would satisfy contradictory time
constraints and hence no possible implementation. The techniques proposed
in [19] are used for this step. These techniques allow for checking time con-
sistency in MSC specifications. These are adapted to check the consistency of
UML/SPT time constraints modeled with UML sequence diagrams.



Consistency of UML/SPT Models 215

5.2 UML/SPT Model Generation

In this section, we focus on the step of UML/SPT-based schedulability model
generation. The generated model is an instance of the domain model illustrated
in Fig. 16. We have compiled this domain model from the dynamic usage model,
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Fig. 16. Compiled Domain Model supporting Schedulability Analysis from UML/SPT

the concurrency model and the schedulability analysis domain model defined
in UML/SPT standard [15]. Our general procedure to generate this model is
outlined in Algorithm (1). The objective of Step 1 is to determine the set of
computation units executed by the statecharts and triggered by the reception of
an event. These computation units are composed of all the actions executed
by the statechart in a run to completion step. These actions include those
executed in entry of a state, the exit of a state and the transition. In order
to do so, the set of events in the sequence diagram is partitioned using the
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projection function ΠSeqD
oi

defined earlier. This yields a totally ordered set of
events per object, troi . This set is then restricted to the reception events as these
are the computations triggering events, trR

oi
. The set of computations units per

object, Actionoi , is then determined using these reception events by a function
getR2C(Statechart, event), which computes for each statechart the different ac-
tions executed at the reception of an event. These computation units correspond
to the class SAction in the domain model shown in Fig. 16. The correspond-
ing stereotype provided by UML/SPT is �SAction�. In Step 2 and Step 3, the
relationship between the determined computation units is established. This rela-
tionship is either a sequentiality or a causality relationship. The sequentiality re-
lationship captures the sequence of ActionExecutions within a Scenario/SAction
as shown in the domain model in Fig. 16. This is determined using the order
of the reception events associated to one object trR

oi
. The causality relationship

corresponds the causality domain model defined in UML/SPT and shown in
Fig. 17. This is determined using the order relation between the send event and
reception event. We assume that the predicate gen(a, e) is true when the execu-
tion of the action a generates the event e and the predicate trigger(e, a) is true
when the event e triggers the execution of the action a. The final step, Step 4,
in this procedure integrates the deployment information in the generated model.
This information is provided by a deployment model and includes for example
the worst case execution time, the priority of each action, the deployment of the
actions on the available threads.

EventOccurence

StimulusGeneration
Stimulus

StimulusReception

Instance

(from Core 

ResourceModel)

Scenario

+cause
+effect

+cause
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+executionHost

+executionHost
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Fig. 17. UML/SPT Causality Domain Model
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Algorithm 1. UML/SPT-based Schedulability Model Generation
Input:

let SeqD <O, E, V,Label> be a sequence diagram
let SC = {oi.sc|∀oi ∈ O} be a set of associated statecharts

Step 1: Actions determination
for all oi ∈ O do

Step 1.1: Event partition
let troi

← ΠSeqD
oi

= {eoi1 , eoi2 , .., eoim
}

Step 1.2: Event restriction to receptions
let trR

oi
← troi

∩ R = {er
oi1

, er
oi2

, .., er
oik

}
Step 1.3: Run to completion steps

let Actionoi
← ∪j≤k{getR2C(oi.sc, er

oij
)}

end for
let Actions = ∪oi∈OActionoi

Step 2: Sequentiality relation
ξ = {(aj , ak)|aj , ak ∈ Actions ∧ ∃oi ∈ O ∧ ∃er

oij
, er

oik
∈ trR

oi
∧ er

oij
� er

oik
}

Step 3: Causality relation
ζ = {(ai, aj)|ai, aj ∈ Actions ∧ ∃e, e′ ∈ E ∧ (e, e′) ∈ V ∧ gen(ai, e) ∧ trigger(e′, aj)}
Step 4: Deployment information integration
for all ai ∈ Actions do

let (ai.wcet, ai.priority, ai.thread, ...) ← deploys(ai)
end for

5.3 Schedulability Analysis Phase

In previous work [6], we defined a metamodel based transformation. This trans-
formation allows to derive a task model expected by the schedulability analysis
technique defined in [18] from a UML/SPT model. For this step of our approach,
we use this model transformation to enable the schedulability analysis. The anal-
ysis allows for computing the worst case response time for each action in each
system-wide transaction. The design model is schedulable if all the response
times satisfy the deadlines. In such a case the statecharts are consistent with the
time constraints expressed in the sequence diagrams assuming the deployment
environment provided by the deployment model.

5.4 Example

As an example of application of Algorithm (1), we consider three important sce-
narios, which are the arrival of a train to a critical section (sequence diagram
SeqD1), a train reaching a point where the gate has to be closed (SeqD2) and
a train exiting the section (SeqD3). Figures 18, 19 and 20 respectively show
the process of determining the actions executed by the different statecharts and
induced by the sequence diagrams. Figure 21 shows the results of the causal-
ity and sequentiality relationships and the obtained end-to-end transactions in
the system. The obtained UML/SPT model after integration of deployment in-
formation is shown in Fig. 22. This model is then supplied for schedulability
analysis [18], after its transformation into an suitable task model using the
approach defined in [6], in order to check the time consistency of the design
model.
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createTimer
inputSensor

Send(GoDown) MoveDown

TimerEvent3

Send(exit) Send(GoUp) MoveUp

TimerEvent4

ActionsTrackController = {(nbTrain++; send(enter)), (nbTrain--; (if(nbTrain==0) send(open))) }

ActionsTrackHandlerler = {(createTimer), (send(wathCrossing); send(close)),(send(exit)) }

ActionsGateController = {(send(goDown)), (send(GoUp)) }

ActionsGate = {(MoveDown), (MoveUp) }

Actions = ActionsTrackController ActionsTrackHandler  ActionsGateController ActionsGate

A.1.1
nbTrain++

A.1.2
nbTrain++

A.1 A.2

B.1.1
Send(watchCrossing)

B.1.2
Send(close)

B.1
3.B2.B

C.1 C.3 C.4C.2.1
nbTrain--;

If(nbTrain==0)
C.2.2

Send(open)

C.2

Fig. 21. End-to-End Transactions Induced by the Sequence Diagrams

6 Related Work

Consistency is an important issue in the context of UML modeling. This led to
extensive research work [1,8]. A classification of the consistency issues in terms
of horizontal/intra-model and vertical/inter-model in UML modeling has been
pointed out in [4] and in [8]. The closest work to ours is probably [10]. In this
paper, syntactic and semantic consistency were distinguished and temporal con-
sistency was singled out as particular case of semantic consistency. The focus
was put on the time constraints although the modeling language considered,
UML-RT, does not have any provision for expressing time constraints. In [13],
an approach was presented to check the consistency of real-time system specifica-
tions using sequence diagrams. This approach is based on a linear programming
algorithm to check the consistency of timing constraints in a sequence diagram
and a composition of sequence diagrams. Time consistency in MSC based on a
formal semantics for MSC has been investigated in [19].

The transformation of UML artifacts used to model dynamic behavior into
timed automata for purposes of verification and consistency checking has been
the focus of several research works including [3,9]. Firley et al. consider in [3]
an approach to transform sequence diagrams with time constraints to observer
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<<RTTimer>>

Clk:Clock

<<SASchedRes>>

TrkHdl:TrackHandler

<<CRConcurrent>>

GC:GateController

<<SAaction>>

{SApriority=1;

RTduration=(20,’ms’)}

B.1.2: Close

<<SASchedRes>>

TrkCtl:TrackController

S:Sensor

<<SATrigger>>

{SAschedulable=$R1,

RTat=(‘periodic’,500,’ms’)}

<<SAresponse>>

{SAabsDeadline=(3000,’ms’)}

A:inputSensor

<<SAaction>>

{SApriority=2;

RTduration=(20,’ms’)}

A.1.2: enter

<<SAaction>>

{SApriority=2;

RTduration=(10,’ms’)}

A.1.1: nbTrain++

<<SAaction>>

{SApriority=3;

RTduration=(20,’ms’)}

C.2.2: open

<<SAResource>>

G:Gate

<<SAaction>>

{SApriority=1;

RTduration=(20,’ms’)}

B.2: GoDown

<
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S
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ti
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n
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>
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A
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ri
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ty

=
3
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d
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ti
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}

C
.1

.4
: 
G
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U

p

<<SAaction>>

{SApriority=1;

RTduration=(400,’

ms’)}

B.3: MoveDown

<<SAaction>>

{SApriority=3;

RTduration=(600,’ms’)}

C.4: MoveUp

<<SAaction>>

{SApriority=1;

RTduration=(20,’ms’)}

B.1.1: watchCrossing

<<SATrigger>>

{SAschedulable=$R2,

RTat=(‘periodic’,500,’ms’)}

<<SAresponse>>

{SAabsDeadline=(650,’ms’)}

B: timerEvent3

<<SATrigger>>

{SAschedulable=$R3,

RTat=(‘periodic’,500,’ms’)}

<<SAresponse>>

{SAabsDeadline=(450,’ms’)}

C: timerEvent4

<<SAaction>>

{SApriority=2;

RTduration=(15,’ms’)}

A.2: createTimer

<<SAaction>>

{SApriority=3;

Rtduration=(20,’ms’)}

C.1: exit

<<SAaction>>

{SApriority=3;

RTduration=(20,’ms’)}

C.2.1: nbTrain--;

If(nbTrain == 0)

Fig. 22. Generated UML/SPT-based Schedulability Model

timed automata. Knapp et al. address in [9] the issue of consistency between
the main UML artifacts used to model the real-time system dynamic behavior:
timed state machines and sequence diagrams with time constraints. The former
express the detailed design of the system and the latter specify the main sce-
narios. This work proposed a technique for the verification of the consistency
between the two views based on UPPAAL timed automata. The timed state
machines are compiled into timed automata and the sequence diagrams anno-
tated with time constraints are transformed into observer timed automata. The
latter transformation is a slight extension to the technique proposed in [3]. The
model checker UPPAAL is then used to verify the timed automata with respect
to the observer timed automata. This technique is embodied in a prototype tool
called HUGO/RT.

7 Conclusions

UML model consistency is a challenging issue. It becomes worse when aspects
such as concurrency and time constraints are taken into account. We presented
in this paper a framework for an incremental definition of the consistency in
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UML/SPT models. Within this framework, we address respectively the syntactic
and semantic consistency, which includes in addition to behavioral consistency,
the concurrency-related consistency and time consistency as these are important
features of UML/SPT models. Considering the time consistency of UML/SPT
models, we focused on the consistency of a set of statecharts with respect to
time constraints modeled using sequence diagrams. Our approach to address
this issue is to use schedulability analysis techniques. We showed how to gen-
erate UML/SPT model supporting such schedulability analysis techniques from
statecharts and sequence diagrams. This model can then be further transformed
into appropriate task model using techniques such as those presented in our
previous work [6].

The approach based on schedulability analysis for checking time consistency
between statecharts and sequence diagrams provides, however, a limited feedback
to the designer. There are other important questions that need to be addressed
in future work. Indeed, when the analysis shows that a design model is not time
consistent, what can be done to fix the inconsistency? Is it possible to provide
more fine-grained feedback in pointing out the origin of the inconsistency? What
changes can be made to the design model and/or the deployment environment
that might fix the problem?

Acknowledgments. This work has been partially supported by the Natural
Sciences and Engineering Research Council of Canada (NSERC).
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Abstract. Scenario-driven requirement specifications are widely used
to capture and represent functional requirement. More recently, the Use
Case Maps language (UCM), being standardized by ITU-T as part of the
User Requirements Notation (URN) has gained on popularity within the
software requirements community. UCM models focus on the description
of functional and behavioral requirements as well as high-level designs
at the early stages of system development processes. However, timing is-
sues are often overlooked during the initial system design and treated as
non-related behavioral issues and described therefore in separate mod-
els. We believe that timing aspects must be integrated into the system
model during early development stages. In this paper, we present a novel
approach to describe timing constraints in UCM specifications. We de-
scribe a formal operational semantics of Timed UCM in terms of Timed
Automata (TA) that can be analyzed and verified with the UPPAAL
model checker tool. Our approach is illustrated using a case study of the
IP Multicast Routing Protocol.

1 Introduction

The Use Case Maps language (UCM) [1] is a high level scenario based model-
ing technique that can be used to capture and integrate functional requirements
in terms of causal scenarios representing behavioral aspects at a high level of
abstraction. UCM can also provide stakeholders with guidance and reasoning
about a system-wide architecture and behavior. This is being reflected by Use
Case Maps being part of a new proposal to ITU-T for a User Requirements
Notation (URN) [1] defining informally the abstract syntax and static semantics
in Recommendation Z.152 [1]. Existing work [2,3] on formalizing the seman-
tics of UCMs has focused on providing an operational semantics for the UCM
language [2] based on Multi-Agent Abstract State Machines. This ASM model
provides a concise semantics of UCM functional constructs and describes pre-
cisely the control semantics. Another formalization attempt was presented in [3],
with UCM constructs being translated into the formal language LOTOS.

UCMs have been successfully used in describing real-time systems, with a
particular focus on telecommunication system and services [4]. Typical charac-
teristics of these application domains are that they include event driven behavior,
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real-time events, parallelism, and distribution. This architectural complexity of-
ten results in specifications that can contain errors and undesirable functional
properties. Since the correctness of such systems depends on the right timing of
operations, a visual inspection or simulation of a model provides only limited
guidance in identifying these types of problems. Model checking [5] has proven
to be an effective way to find such subtle errors.

In this article, we extend our ongoing research towards the construction of a
formal framework for UCM to describe, simulate, analyze and verify real-time
systems [2]. We believe that timing aspects must be integrated at an early stage
of development to allow for a consistent analysis throughout all lifecycle phases
of software product. In what follows we present a novel approach that addresses
the following concrete issues:

1. The existing UCM language does not describe semantics involving time and
the modeling of timing related information, such as the time required for
a transition or a responsibility to complete. In this article we introduce
an extension to the existing untimed UCM semantics [2], to allow for the
modeling of semantics involving time to support such time related analysis
of the UCM models.

2. A formal syntax and semantics in terms of Timed Automata [6] over a dense
time model is presented for the timed UCM semantics.

3. Our formal semantics proposed in this paper serves as input to the timed
model checker UPPAAL [7] allowing for both, the formal verification of sys-
tem properties and the simulation and analysis of timed UCM specifications.

In an attempt to make this paper self-contained, we include in Sect. 2 and
Sect. 3 some of the core background information relevant to this research, includ-
ing an overview of the untimed Use Case Maps notation along with a scenario
of a Multicast Routing Protocol. Section 4 discusses the real-time extensions to
UCM. In Sect. 5, we present the syntax of the resulting timed UCM. Section 6
provides the formal semantics of Timed UCM in terms of Timed Automata
(TA) [6] and its corresponding UPPAAL models [7]. The resulting models are
optimized in Sect. 7 through the use of TA sequential composition. Section 8
describes the application of model checking to verify requirement properties.
Finally, conclusions are presented in Sect. 9.

2 Related Work

In a previous work [8], we extended the UCM language with an absolute time syn-
tax and proposed operational semantics in terms of Clocked Transition Systems
(CTS) [9] over a discrete time model. In this work, we use dense-time semantics,
which is more suitable for distributed systems. Existing research dealing with the
addition of time support to modeling languages has taken several directions. One
direction consists on focusing on the enhancement of current languages by adding
new constructs and time constraints. For instance, timing constraints in variants
of MSCs notations are expressed using timers, delay intervals and timing mark-
ers [10]. UML Real-Time profiles, such as UML SPT [11] and OMEGA-RT [12],
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use this approach and add features for describing a variety of timing aspects such
as timing, resources, performance, schedulability, duration patterns. UML 2.0 [13]
introduces a new diagram called Timing Diagram to allow reasoning about time
and visualizing state changes over time. Alfonso et al. [14] introduced VTS, a
visual language to define event-based properties such as freshness, bounded re-
sponse, event correlation, etc. The underlying language is based on partial orders
and supports real-time constraints in a dense time domain. However, the result-
ing semantics are not executable. RTGIL [15], an extension of temporal logic, has
been proposed in order to enable quantification of time using bounded temporal
operators, freeze quantifiers and explicit clock variables.

Another research direction is the combination of an existing notation with an-
other formal description technique to provide better handling of timing aspects.
Eshuis [16] presented a formal semantics to UML activity diagrams in terms of
clocked transition systems. In [17], a formalization of UML statecharts in terms
of hierarchical timed automaton (HTA) is presented. The resulting HTA is trans-
lated into a network of flat timed automata to comply with the UPPAAL format.
Firley et al. [18] translated UML timed Sequence Diagrams into observers in the
UPPAAL formalism allowing for formal verification using model checking. How-
ever, the presented construction only supports totally ordered sets of events.

3 Use Case Maps

A Use Case Map specification depicts scenarios as causal flows of responsibilities
(operation, action, task, function, etc.) that can be superimposed on underlying
structures of components. Components are generic and can represent software
entities (objects, processes, databases, servers, etc.), as well as non-software en-
tities (e.g. actors or hardware). These relationships are said to be causal because
they involve concurrency, partial ordering of activities and they link causes (e.g.
preconditions and triggering events) to effects (e.g. post-conditions and resulting
events). Scenarios are expressed above the level of messages exchanged between
components and have not necessarily to be bound to a specific underlying struc-
ture (such UCMs are called Unbound UCMs). One of the strengths of UCMs is
their ability to integrate a number of scenarios together in a map-like diagram,
allowing users to reason about the system architecture and behavior. A UCM
specification can be further refined to a more detailed system design model such
as ITU language Message Sequence Charts [19]. In the following section, we il-
lustrate some of the basic UCM concepts based on an scenario of IP Multicast
Group Membership Maintenance example in Fig. 1.

IP MulticastProtocol Group MembershipMaintenance. One of the tasks
of IP multicast routers is to determine the presence of receivers for a given mul-
ticast group. This allows forwarding multicast traffic only where necessary, and
avoids flooding of network segments when there are no receivers interested within
a given group. Group membership information between hosts and routers on local
networks is exchanged through the Internet Group Management Protocol
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Fig. 1. IP Multicast Group Membership Maintenance

(IGMP) [20]. Hosts willing to receive traffic directed to a multicast group can
send a membership REPORT message used by the router to enable forwarding
of the requested group to the local network segment. Fig. 1 illustrates a typical
scenario, where a router (e.g. last-hop-Router) periodically refreshes the group
membership informations. This refreshing is achieved by sending membership RE-
QUESTs as well as listening for membership REPORTSs from receivers (e.g. Re-
ceiver1 and Receiver2 ) that are still interested in the group. Data forwarding for a
group is stopped in case a request times out without any report received. In the IP-
Multicast scenario shown in Fig. 1, filled circles represent start points, which cap-
tures preconditions and trigger events (start of the scenario Start-Maintain). End
points model the resulting events, with post-conditions being illustrated as bars
perpendicular to the causal paths(e.g. End-Maintain1 and End-Maintain2 ). Con-
currency and partial ordering of responsibilities are supported in UCMs through
the use of AND-forks and AND-joins. The membership request (i.e. responsibil-
ity REQ-group-G) is received by both receivers in two parallel paths. Paths can
fork as alternatives (OR-fork), in this case branches can be guarded by conditions
shown between square brackets (e.g. member1 and not(member1)).

In cases when the set of local receivers for a group is large, feedback storms
can be avoided, by the host delaying a reply request and instead scheduling the
transmission of a report (e.g. responsibility send-report) at a random time after
the initial request. A scheduled transmission (e.g. end points report-suppressed1
and report-suppressed2 ) is canceled if a report is received (sent by another host)
before the scheduled time (e.g. timeout of the timers Timer1 and Timer2 ).

4 Modeling Time in UCMs: Decision Points

In the context of introducing time in UCMs, the following assumptions are
considered:

1. Timed responsibility enabling. Initiation and termination of enabling
timing responsibilities [21] may represent a flexible and suitable choice for
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UCMs. Both a lower and upper bound may be imposed on the enabling of
these responsibilities. Three options can be considered (note, for illustration
purposes the discrete time domain is only used):

- A responsibility R may be associated with a tuple (τ ,τ ’). Responsibility
R is enabled (i.e. can start executing) τ units after the completion of
its predecessor (will be discussed in the next bullets). This enabling is
offered for τ ’ units and is retracted after.

- A responsibility R may be associated with a tuple (τ ,0). This type of
enabling is called punctual enabling, where the enabling retracts if the
responsibility is not taken immediately.

- A responsibility R may be associated with a tuple (τ ,⊥). This type of
enabling is called simple enabling, where no upper bound is imposed on
enabling. The responsibility is enabled τ units after its predecessor and
never retracts. This may involve major (even infinite) system execution
delays.

For simulation and verification purposes and in order to ensure a maximal
progress semantics, punctual enabling is selected.

2. Instantaneous (atomic) vs. durational actions. Approaches that adopt
instantaneous action semantics make the modeling more compact and easier
to reason about. However, in the context of UCMs a durational semantics is
adopted to allow for a more:

– Realistic description of various system requirements for a wide range
of application domains, like real time system where actions take only
milliseconds to business process models with actions lasting days or even
weeks.

– Truly description of concurrent systems where at any given time t more
than one action may be executing.

In the context of Use Case Maps, time is only consumed by responsibilities.
MinDur and MaxDur denote respectively the upper and lower bound for the
execution time of a responsibility. For simulation purposes, responsibilities
with undefined durations are considered to take one clock tick to complete.

3. Relative vs. absolute time. A time constraint may be expressed using
either an absolute time where the time of occurrence of a responsibility
refers to the execution starting time, or a relative time where the time of
occurrence of a responsibility refers to the execution of a causally preceding
responsibility. In the context of UCMs, relative time is generally preferred
over absolute time due to the following reasons:

- In an absolute time model context, changing the origin of time would
impact all the constraints in the model.

- In UCM models containing loops the use of absolute time would not be
possible because a responsibility, being part of a loop, may be traversed
multiple times with different time stamps. In addition, placing an abso-
lute time constraint on a responsibility after a loop would constrain the
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number of times a loop can be traversed, which is only known at run-
time. Fig. 2 illustrates the situation where the second execution of re-
sponsibility a invalidates its absolute time constraint (MClock=x ). Fur-
thermore, the absolute time constraint of responsibility b (MClock=y)
will depend on how many times a is executed.

Fig. 2. Absolute time constraint in presence of UCM loop

A UCM model may have more than one start point. In such a case, an
absolute time constraint is required and the user may choose the time stamp
of one start point to fix the origin of time, or have an independent origin.
However, special attention should be given to such decisions since it may
impact the overall system constraints and behavior.

4. Time representation and measurement. An interval-based representa-
tion (in contrast to a point-based representation) is used to estimate the
execution time of a responsibility (i.e. [MinDur, MaxDur]) and to measure
the execution time of an end-to-end scenario (e.g. latency measurement).

5. Dense vs. discrete time. Our goal is to provide formal semantics of timed
UCM in terms of timed automata to be supported by the timed model
checker UPPAAL [7]. We have chosen a dense time model which will have,
apart from the complexity of reasoning in the verification domain, only minor
effect on the proposed semantics.

6. Global vs. local clocks. As stated earlier, a global and centralized clock
(Master Clock: MClock) for measuring and increasing time globally over the
system is used to trigger UCM start points. Local clocks are used (1) to
measure the delay that a responsibility may have; (2) to measure the time
used by a responsibility; (3) and in timers to set a duration, reset to zero
and to observe for timeout.

7. Urgency. The concept of urgency is introduced into timed UCM semantics
as follows:

- A responsibility R which is associated with a constraint (τ ,τ ’) is con-
sidered as urgent when it is enabled immediately after the execution
of its predecessor construct (τ = 0). Alternatively, a responsibility is
considered as delayable when a delay is introduced (τ 
= 0).

- Except responsibilities, all other UCM constructs are considered as ur-
gent once enabled.

- Transitions are urgent and instantaneous. Transitions are processed as
soon as they are enabled allowing for a maximal progress and can there-
fore be considered as eager according to the definition of urgency intro-
duced in [22].
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5 Syntax of Timed Use Case Maps

The assumptions discussed in the previous section are the basis for the timed
Use Case Maps syntax.

Definition 1 (Timed Use Case Maps). We assume that a timed UCM is
denoted by an 8-tuple (D, H, λ, C, GVar, Bc, Bs, MClock) where:

– D is the UCM domain, composed of sets of typed elements. D= SP ∪ EP ∪ R
∪ AF ∪ AJ ∪ OF ∪ OJ ∪ Tm ∪ ST. Where SP, EP, R, AF, AJ, OF, OJ, Tm
and ST are respectively the sets of Start Points, End Points, Responsibilities,
AND-Fork, AND-Join, OR-Fork, OR-Join, Timers and Stubs.

– H is the set of edges connecting UCM constructs to each other.
– λ is a transition relation defined as: λ=D×H×D.
– C is the set of components (C = ∅ for unbound UCM).
– GVar is the set of global variables.
– Bc is a component binding relation defined as Bc =D×C. Bc specifies which

element of D is associated with which component of C. Bc is empty for
unbound UCM.

– Bs is a stub binding relation and is defined as Bs =ST×IN/OUT×SP/EP. Bs
specifies how the start and end points of the plug-in map would be connected
to the path segments going into or out of the stub.

– MClock is the system master clock.

The signature of timed UCM constructs (see Fig. 3) is defined as follows:

Definition 2 (Timed UCM Constructs)

– Start Points are of the form SP (PreCondition-set, TriggeringEvent-set,
SP-label, in, out, DL) where the parameter PreConditions-set is a list of
conditions that must be satisfied in order for the scenario to be enabled (if
no precondition is specified, then by default it is set to true). The parameter
TriggeringEvent-set is a list that provides the set of events that can initiate
the scenario along a path. The parameter SP-label denotes the label of the
start point. A start point should not have an incoming edge except when
connected to an end point (called a waiting place) or an entry edge of a
stub. The parameter in ∈ H represents such incoming edge. The parameter
out ∈ H is the (unique) outgoing edge. DL is an optional absolute time
delay used to introduce a delay in the start point triggering that may occur
especially in the presence of more than one start point. DL is expressed
relatively to MClock.

– End Points are of the form EP (PostCondition-set, ResultingEvent-set,
EP-label, in, out), where the parameter PostConditions-set is a list of con-
ditions that must be satisfied once the scenario is completed. The parameter
ResultingEvent-set is a list that gives the set of events that result from the
completion of the scenario path. The parameter EP-label denotes the label
of the end point; the parameter in ∈ H is the (unique) incoming edge. End
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Fig. 3. UCM Constructs

points have no target edge except when connected to a start point (i.e. a
waiting place) or connected to an exit edge of a stub, represented by out ∈
H. End points are not delayed.

– Responsibilitiesare of the form Resp(in, R-label, out, [MinDur, MaxDur],
DL) where in ∈ H is the incoming edge, R-label is the activity to be executed,
and out ∈ H is the outgoing edge. MinDur and MaxDur are respectively the
minimum and maximum time allowed for a responsibility to complete its exe-
cution. As stated in Sect. 4, DL represents respectively a possible lower bound
for the delay. As discussed earlier, we consider punctual enabling.

– OR-Forks are of the form OR-Fork(in, [Condi]i≤n, [outi]i≤n), where in
denotes the incoming edge, [Condi]i≤n is a finite sequence of Boolean ex-
pressions, and [outi]i≤n is a sequence of outgoing edges.

– OR-Joins are of the form OR-Join({ini}i≤n, out), where {ini}i≤n denotes
the incoming edges, and out is the outgoing edge.

– AND-Forks are of the form AND-Fork(in, ${outi}i≤n), where in denotes
the incoming edge, and {outi}i≤n is a set of outgoing edges.

– AND-Joins are of the form AND-Join({ini}i≤n, out), where {ini}i≤n de-
notes the incoming edges, and out is the outgoing edge. Time elapses in
AND-Join while waiting for all incoming edges to synchronize. Such delays
are conditioned by the internal execution of the system and do not represent
a user requirement.

– Timers are of the form Timer (in, TriggeringEvent-set, cont path, to path,
TO). The synchronous timer is similar to a basic OR-Fork with two outgoing
disjoint branches. The parameter TriggeringEvents-set is the list that con-
tains the set of events that can trigger the continuation path (i.e. cont path)
and the parameter to path ∈ H denotes the timeout path (marked with a
crooked bar in Fig. 3(i)). TO is the timer’s expiration time.

– Stubs have the form Stub({entryi}i≤n, {exitj}j≤m, isDynamic, [Condk]k≤l,
[plugink]k≤l) where {entryi}i≤n and {exitj}j≤m denote respectively the set

(a) Start point (b) Responsibility (c) End Point

in
out1

out2

(d) OR-Fork

in
out1
out2

(e) AND-Fork

out
in1

in2

(f) OR-Join

in2

in1
out

(g) AND-Join (h) Stub Construct (i) Timer
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of the stub entry and exit points. isDynamic indicates whether the stub is
dynamic or static. Dynamic stubs may contain multiple plug-ins [plugink]k≤l

whose selection can be determined at run-time according to a selection-policy
specified by the sequence of Boolean expressions [Condk]k≤l. The sequence
Cond is empty for static stubs (i.e. isDynamic=false). No time constraints
are defined for stubs since a stub is simply a container for plug-ins and the
execution of a stub is the execution of the selected plug-in.

We have added the modeling of timing as an orthogonal feature to the untimed
UCM syntax presented in [2]. The untimed syntax can be restored simply by
removing the duration and delay of responsibilities as well as the delay observed
by start points. UCM control constructs such as OR-Fork, Or-Join, AND-Fork
and AND-Join are executed without delay. No relevant user requirements may
suggest such delays.

6 Formal Semantics of Timed Use Case Maps

In this section, we define the formal semantics of timed UCM models in terms
of Timed Automata (TA) [6].

6.1 Timed Automata (TA)

The theory of timed automata was introduced by Alur and Dill [6]. A timed
automaton is a finite-state Büchi automaton extended with a finite set of real-
valued variables modeling clocks. Timed automata has been adopted in several
verification tools including UPPAAL [7]. In the following section, we give the
formal syntax and semantics of timed automata as defined in [23].

6.2 TA Formal Syntax and Semantics

Assume a finite set of real-valued variables C ranged over x, y etc. standing for
clocks and a finite alphabet Σ ranged over by a, b etc. standing for actions.

Clock constraints. A clock constraints is a conjunctive formula of atomic con-
straints of the form x∼n or x-y∼n for x, y ∈ C, ∼∈ {≤, <, =, >, ≥} and n∈N.
A clock constraint is downward closed if ∼∈ {≤, <, =}. We use B(C) to denote
the set of clock constraints, ranged over by g and also by D later.

Guards and Invariants. A guard is a finite conjunction over data constraints
and clock constraints. An invariant is a finite conjunction over downward closed
clock constraints. Both conjunction types contain additionally the constants true
and false.

Assignments. A data assignment is of the form v:= A, where v∈V and A an
arithmetic expression over V . A clock reset is of the form x:=0, where x∈C.
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Definition 3 (Timed Automaton)
A timed automaton A is a tuple < N, l0, E, I > where:

– N is a finite set of locations (or nodes),
– l0 ∈ N is the initial location
– E ⊆ N × B(C) × Σ × 2C × N is the set of edges and
– I: N → B(C) assigns invariants to locations

There are two types of transitions between states: delay transitions (the automa-
ton stays in a location) and action transition (and enabled edge is taken).

Clock assignments functions are used to track the changes of clock values. Let
u, v denote such functions, and use u∈g to mean that the clock values denoted
by u satisfy the guard g. For d∈ R+, let u+d denote the clock assignment that
maps all x∈C to u(x) + d, and for r⊆C, let [r �→0] u denote the clock assignment
that maps all clocks in r to 0 and agree with u for the other clocks in C-{r}.

Definition 4 (TA Operational Semantics). The semantics of a timed au-
tomaton is a transition system (also known as a timed transition system) where
states are pairs < l, u > and transitions are defined by the rules:

- 〈l,u〉 d→ 〈l,u+d〉 if u ∈ I(l) and (u+d)∈I(l) for a non-negative real d in R+

- 〈l,u〉 a→ 〈l’,u’〉 if l
g,a,r−→ l’, u ∈ g, u’=[r �→0]u and u’∈I(l’)

6.3 The Model Checker UPPAAL

UPPAAL [7] is an integrated tool environment for modeling, validation and
verification of real-time systems modeled by a network of timed automata. In
addition to the timed automata features presented above, UPPAAL supports
synchronization annotation of the form a!(offer) or a?(acceptance). If the tran-
sition carries such synchronization then some corresponding transition (labeled
by a! or a?) of some other timed automaton has to be taken simultaneously. We
refer the reader to [7] for a detailed introduction to UPPAAL.

6.4 Timed UCM Constructs in UPPAAL

As stated in Sect. 3, UCM specifications are defined above the level of mes-
sages (i.e. UCMs do not support the notion of send or receive of messages).
Instead, UCMs use global variables to define different UCM execution paths. In
this section, we model a timed UCM specification as a set of concurrent timed
automata. Each process interacts with other processes through synchronization
channels and read-write operations to global variables. Since the UPPAAL se-
mantics does not support maximal progress semantics, the synchronization chan-
nels are only used to coordinate the transfer of control between UCM constructs.
In what follows, we define a TA template for each timed UCM construct:
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– Start Point. Fig. 4(a) illustrates the TA of a start point. The start point
is triggered when the PreCondition-set is satisfied, and there occurs at least
one event from the triggeringEvent-set, and the delay constraint is met. This
is described by a conjunction of Boolean conditions attached to the transition
guard: PreCondition-set ∧ triggeringEvent-set ∧ ’MClock≥DL’. The process
writes into the channel out and the control passes to the next construct. If
the start point is part of a plugin within a stub, then the start point process
must synchronize with the entry edge of the stub through reading from in
channel (see Fig. 4(b)).

(a) TA of Start Point (b) TA of Plugin’Start Point

Fig. 4. TA of a Start Point

Usually, a UCM describes a system and its environment in one single map. It
shows the resulting interactions between the different actors and the system
under design. Only for illustration purpose, Fig. 5 shows a start point that
interacts with the environment through channel synchronization.

Fig. 5. Start point triggered by the environment

– Responsibility. Each responsibility has two local clocks:delay used to mea-
sure the delay that a responsibility may have and LClock is used to measure
the duration of execution of a responsibility. The TA synchronizes with the
preceding construct through the channel in. During this transition, local
clock delay is initialized to zero. The process stays in location wait for DL
(the invariant delay ≤ DL is used to model punctual enabling making the
transition as urgent after DL), then start executing for an amount of time
within [MinDur, MaxDur] interval. The location invariant LClock ≤ Max-
Dur is used to make the process leave the state executing whenever the local
clock becomes greater than MaxDur. The control passes to the next con-
struct after writing to out channel (see Fig. 6(a)). Responsibilities may have
global variable assignments attached to them. These updates are attached
to the transition between locations executing and end. Fig. 6(b) illustrates
such a TA with assignment ‘var:=x’.
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– OR-Fork. When the control passes to the OR-Fork through reading from
in channel, the conditions are evaluated and the control passes to the edge
associated with the true condition. If more than one condition evaluates to
true (i.e. nondeterministic choice), the control passes randomly to one of
the outgoing edges associated to the true conditions. Fig. 6(c) illustrates the
automaton associated to an OR-Fork with two outgoing edges.

– OR-Join. When one or many flows reach an OR-Join (i.e. through synchro-
nization on in channels), the control passes to the outgoing edge through the
out channel. Fig. 6(d) shows the automaton of OR-Join with two incoming
edges.

– AND-Fork. When the control reaches the AND-Fork (by reading from in
channel), the process writes repeatedly to the outgoing channels. Fig. 6(e)
illustrates the automaton of an AND-Fork with two outgoing parallel flows.

– AND-Join.When parallel flows reach an AND-Join and the delay constraint
is met, then they must be joined. It is required that the process reads from all
incoming channels to enable the transition and writes into the out channel.
The last flow arriving to the AND-Join will fire the automaton. Fig. 6(f) shows
the automaton of an AND-Join with two incoming parallel flows.

– Stub. The stub automaton implements the binding relation between a stub
and a plug-in(i.e. Bs), allowing for the control to pass from a stub’entry point
to a start point and from a plugin end point to a stub’exit point. Fig. 6(g)
illustrates the timed automaton for a stub with one entry point entry and
one exit point exit.

– End Point. If the end point is inside a plug-in, then the control passes to
the stub’s exit point bound to the plug-in end point (Fig. 6(j)). Otherwise,
the flow is stopped (Fig. 6(k)).

– Timer. The timer construct is illustrated in Fig. 6(h). The timer stays
for TO in location waiting. The control passes to the continuation path in
case an event occurs before TO. Otherwise, the control moves to the time
out path (i.e. TO path). There are situations where an action is required
as soon as the timer expires (i.e. timeout event and the action are atomic).
Fig. 6(i) shows a timer template with action (i.e. global variable assignment)
attached to it.

A timed UCM specification is represented as a collection of timed automata
where each timed UCM construct is translated into an instance process based on
the underlined templates. This design solution is simple to implement and provides
a great level of flexibility. However, the following shortcomings are worth noting:

- This approach is costly in terms of number of concurrent processes, number
of locations and number of local clocks.

- The presented approach does not support cycles (i.e. loops). Indeed, once a
construct is executed (i.e. reaches its TA end location), it cannot be executed
a second time because there is no extra transition connecting its end location
to its start location.

In the subsequent section, we propose an approach to reduce the number of
processes considerably that also allows for the description of cycles.
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(a) TA of Responsibility

(b) TA of Responsibility with updates

(c) TA of an OR-Fork (d) TA of an OR-Join (e) TA of an AND-Fork

(f) TA of an AND-Join (g) TA of Stub

(h) TA of Timer (i) TA of Timer with action

(j) TA of a plugin end point (k) TA of a root map end point

Fig. 6. TA templates of UCM constructs

7 Optimized Approach

7.1 Sequential vs. Parallel Control Flows

The transfer of control between sequential constructs occurs in a determinis-
tic way (i.e. in complete order), while concurrent executions result in different
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Segment 1: [SP1;R1;R2]
Segment 2: [SP2;R5]
Segment 3: [R3;EP1]
Segment 4: [R4]
Segment 5: [R6; EP2]

Fig. 7. UCM parallel flows decomposition

execution orders (i.e. partial order). Consequently, a UCM specification may
be decomposed into a collection of sequential paths. For instance, the generic
UCM in Fig. 7 may be decomposed into five segments resulting in five processes,
one process for AND-Fork and one process for AND-Join. Concurrent control
constructs such as AND-Forks, AND-Joins and OR-Joins (in the case of merging
concurrent flows) represent the glue that connects different UCM segments. A
further decomposition based on UCM component binding may be considered.

7.2 Sequential Composition of Timed Automata

The sequential composition of UCM TA templates consists of the resolution of
all synchronizations. The transfer of control from one UCM construct to another
is done through synchronization (i.e. offer(a!) and acceptance(a!)) on the channel
representing the hyperedge between them (i.e. enabling the hyperedge between
the two constructs). This synchronization takes place in the transitions leading
to locations labeled end. Fig. 8(a) illustrates a generic sequential composition
for processes having a single end location, while Fig. 8(b) illustrates a sequential
composition for processes having multiple end locations, as they typically result
from the use of OR-Forks and Timers.

(a) Sequential composition 1

(b) Sequential composition 2

Fig. 8. TA Sequential Composition

Fig. 9 shows the result of the sequential composition for the UCM introduced
in Fig. 1. Fig. 9(a) shows the timed automata of the segment composed of the
start point start-maintain followed by responsibility REQ-group-G. Fig. 9(b)
shows the timed automata of the segment starting at responsibility receive-REQ
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(a) Segment 1

(b) Segment 2

Fig. 9. TA of IP Multicast Group Membership Maintenance

and ends with the end points Silent, Report-suppressed and End-maintain. The
later is instantiated twice, one for each receiver. The three processes are con-
nected through an AND-Fork TA template 6(e).

8 Formal Verification

UPPAAL uses a subset of Timed Computational Tree Logic(TCTL). In this
section, we verify selected properties against the model described in Fig. 1 and
implemented in UPPAAL in Fig. 9. We assume that both receivers are members
of the same multicast group and all responsibilities have a duration between 1
and 2 with a delay of 1. To avoid deadlock situations at end locations, we add a
loop transition at each of the 6 end locations of the model in Fig. 9.

Precedence Property: For any receiver, the sending of a report is always
preceded by a reception of a query. This property is translated into the following
UPPAAL formula:

A<>(rec1.execSEND imply seg1.ExecREQ).
This property is checked to be true by the UPPAAL verifier.

Liveness Property: In the presence of receivers, the multicast group should be
updated. This property is translated into the following formula:

E<>(rec1.execUPDATE or rec2.execUPDATE).
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This property holds since one of the two receivers responds to the router query
and the group is eventually updated.

Time Bounded Property: Sending a report occurs at least 10 time units after
the start of the scenario. This property is translated into the following UPPAAL
formula:

A [] (rec1.execSEND imply MClock > 10).
This property is not satisfied and UPPAAL generates an execution trace of a
counter example showing that the responsibility send-REP may occur as soon
as MClock is greater or equal to 7.

Safety Property: In the presence of more than one receiver, only one and only
one receiver should send a report. This property is translated into the following
UPPAAL formula:

A[] not (rec1.execSEND and rec2.execSEND).
This property fails leading to the generation of a counter example. This failure
is due to the fact that the timer timeout event and responsibility SEND-REP
occur in two distinct steps. Hence, timer timeouts in Receiver 1 and Receiver 2
may be triggered one after the other. In such a case, both receivers will send a
report. This behavior is corrected by replacing the plain timer by a timer with
action (Fig. 6(i)) which makes the action of sending a report part of the timeout
transition. Therefore, the property becomes true.

9 Conclusions

In this paper, we have presented an extension to the Use Case Maps language
with timing information to allow for modeling real-time systems at the early
stages of a system development process. We have introduced a concise formal
operational semantics for timed UCM based on Timed Automata. The resulting
semantics serves as input to the timed model checker UPPAAL allowing for
the formal verification of system properties. As part of our future work, we will
investigate how schedulability theory can be applied to timed UCM models.
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Abstract. Telecommunication services will be in the future built upon
peer-to-peer protocols. This implies the need to have strong guarantees of
the dependability of those protocols. One building block for such proto-
cols are distributed hash tables (DHT in short), and Pastry is a protocol
implementing distributed hash tables. We have designed a probabilist
model of Pastry that enabled us to simulate it. In particular, we have
studied the performance of the protocol with respect to the number of
nodes. We have used for this study probabilistic model checking tools
used in the RNTL project Averros. This is a significant application of
academic tools to industrial concerns.

Keywords: Model checking, probabilistic models, PRISM, APMC,
Pastry.

1 Introduction

One of the striking changes in the telecommunication field during the last years
has been the explosion of peer-to-peer systems. Such systems deliver services,
like file delivery for example, by relying upon component nodes which participate
in similar roles for delivering the service. Peer-to-peer systems can be viewed as
decentralized network architectures in contrast with client-server architectures
where roles are sharply distinguished between clients which request the service
and servers which answer the requests.

The peer-to-peer networks are today overwhelmingly used for providing file
delivery services. The peer-to-peer file sharing is now universally used but tele-
communication operators are envisioning to use peer-to-peer systems for deliv-
ering other services. The advantages of peer-to-peer architectures is that they
provide theoretically: fault-tolerance (since all nodes play the same role, the fail-
ure of one will have few impact), scalability (again, since all nodes play the same
role, it is enough to add more nodes for scaling up the service), and a lack of
resource bottlenecks.

But it is difficult to guarantee the overall behaviour of peer-to-peer systems.
Some special configurations could introduce overall instability. For delivering
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more critical services using peer-to-peer systems, telecommunication operators
will need to make experiments and simulations for deriving strong guarantees
upon their properties. Our work takes place in this general context. We want
to show how a probabilist modelling can be used in an industrial setting for
designing dependable systems and obtain guarantees about performance aspects
of a realistic size model.

We have studied the distributed hash table protocol called Pastry [1]. A dis-
tributed hash table (in short DHT) provides the same lookup service than a
hash table but using peer-to-peer principles. Since the relevant data of the DHT
is distributed between all the participating nodes, a DHT system has got to
include a routing algorithm which enables to find the relevant information by
hopping from node to node. Pastry is an original DHT protocol, originally de-
signed by Rowstron and Druschel [5]. There exist open source implementations
of Pastry from Microsoft Research [2]. As a DHT implementation, Pastry is a
good candidate for being used as a building block for peer-to-peer services. As
such, it is interesting to have guarantees upon its behaviour. We used the sim-
ulation and model-checking tools that were extended in the Averros project [1],
precisely Prism [4] and APMC [3], for deriving such guarantees. Of particular
interest to us, we used the possibility to model probabilistic events for analyzing
the behaviour of Pastry.

In a first section, we present shortly the Pastry protocol and more precisely
its routing algorithm. We then describe in the next section the choices we made
during our modeling of Pastry. Our simulations are oriented towards evaluating
the impact of the login/logout of the nodes on the routing performance of Pastry.
The routing algorithm of Pastry is supposed to enable to route messages in a
number of hops which increases as the logarithm of number of nodes. We will
see that this is indeed the case.

2 A Short Presentation of Pastry

Pastry implements a distributed hash table. As such, a Pastry system is made
of several identical nodes upon which the relevant hashtable information is dis-
tributed. Each Pastry node has got a Pastry identifier, which is also the hash key
for its relevant information. A Pastry node also maintains a network address,
which enables other nodes to communicate with it.

The most important part of Pastry is its routing algorithm. When you are
performing a lookup and/or an insert in the DHT managed by Pastry, the infor-
mation you have at the start is the Pastry identifier that you want to lookup or
insert and a network identifier for another Pastry node. The node which is di-
rectly accessible does not have necessarily the pertinent information. This node
will then have to route your request to the pertinent node. For describing this
routing algorithm, we will first describe Pastry identifiers, then the routing ta-
bles that each node maintains. We will then describe the insertion and update
operations and then the routing algorithm itself.
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2.1 Pastry Identifiers

The addressing scheme of Pastry is based on a ring. Each node has got a position
on this virtual ring according to its identifier. This identifier is attributed to the
node at the initialization time. It is created using a hash function applied to
node data, for instance the node’s IP address. The identifier is written in base B
and has a length of l digits. We can now see the virtual ring split recursively into
B parts. Each digit of the node identifier corresponds to the name of a partition
of the ring. There can be at maximum Bl identifiers.

For example, in the remaining of this paper, we will use a base B = 4 and a
length l = 8. An example of Pastry identifier is then i = 10322102. The ring is
divided into quadrants, and each quadrant is split itself into quadrants. For the
node i, it is situated in the second quadrant of the ring (first digit of i is 1), then
in the first quadrant of this quadrant (second digit of i is 0), etc.

At the initialization, we suppose that the quality of the hash function and
the size of B and l is such that there is no collision with preexisting Pastry
identifiers. Typical choices for B and l would be B = 16 and l = 8 to fit the
most popular integer size.

2.2 Routing Tables

Internally, each Pastry node keeps updated three routing tables. A cell in those
tables is a pair made of a Pastry identifier and a network address. Each time a
Pastry identifier is present in one of the routing tables, it is possible to commu-
nicate directly with it, using its network address. In this case, the routing ends
with a last hop.

The first routing table is called the leaf table. It contains B cells, where B
is the base used for Pastry identifiers. The nodes put into that table are the
neighbouring nodes, in the sense that Pastry identifiers are close. For example,
for the node s = 20322102, we could have in the leaf table the routing data
for the Pastry nodes 20322100, 20322101, 20322103 and 20322110. Of course, in
this case the four immediate neighbours of s have been created, which is not at
all guaranteed. A more realistic table will contain for example the Pastry nodes
20313010, 20320013, 2322230 and 23330010. But, it is an invariant of Pastry that
the Leaf table contains the closest nodes of s with respect to the Pastry identifier.
At each insertion of a new node, this insertion is realized by the closest node
of the new node, which uses its own Leaf table for giving an up-to-date table
to the new one. The new node will broadcast its own identity to its neighbours
that will update their own Leaf tables.

The second routing table is the main routing table. It contains l lines of B
cells. Each cell contains information for one representative of recursive divisions
of the Pastry ring, going closer of the original identifier. The node containing
the routing table will be itself its representative for its own sectors. For example,
for the node s = 20322102, the first line of its main routing table could have
nodes such as t = 0xxxxxxx, t will be the representative for the first quadrant;
u = 1yyyyyyy will be the representative for the second quadrant; s will be
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its own representative for the third quadrant and v = 3zzzzzzz will be the
representatives for the fourth quadrant. The second line will have representatives
for the four subdivisions of the third quadrant. The node s = 20322102 is its
own representative for the first division of the third quadrant, followed by, for
example w = 21aaaaaa, x = 22bbbbbb, y = 23cccccc. Of course, this routing
table can also have empty cells, with no representatives for the corresponding
subdivision.

The third routing table is the network routing table. It contains Pastry iden-
tifiers whose network addresses are close, in a network sense, of the own node.
It enables shortcuts in the routing algorithm. When the node has got to route
a message to one node that happens to be in this network neighbours’ list, it
routes directly the message in one hop using this table. In our modelling of Pas-
try, we will not take this table into account. Since this table provides shortcuts,
this means that our estimation of the routing performance of the algorithm will
be an over-approximation. We will see that we nevertheless find that the order
of a logarithmic performance is obtained even without this optimization.

2.3 Routing Algorithm and Table Updates

Initially, a new Pastry node has got empty routing tables. It broadcasts its
Pastry identifier and it will be registered in the Pastry system by its clos-
est network neighbour. Its network neighbours will answer to the new node
with their own routing tables. This will give it first data to put in its rout-
ing table. In parallel, the closest network neighbour of the newcomer will uses
the routing algorithm to register the newcomer into Pastry. It makes a rout-
ing towards the closest neighbour of the newcomer in terms of Pastry iden-
tifiers. This routing will update all the participants with the data about the
newcomer. In general, each time that nodes route messages, they update their
tables if they get more precise infos for filling their tables with the routing
requests. As soon as routing tables are known, the routing algorithm is quite
simple:

– If the identifier of the receiver is in the leaf table, the node directly sends
the message to the receiver. This is a one hop routing.

– If the identifier of the receiver is not in its leaf table, the node searches in
its main routing table the closest node with the receiver in terms of Pastry
identifiers. This means the node with a identifier which shares the longest
same prefix as the identifier of the receiver.

– In some rare cases, it may happen that the node can’t find a node closest
than itself in the main routing table and the receiver is nevertheless not in
its leaf table. In this case, the node makes a best effort routing. It will send
the message to route towards one of its referenced nodes, hoping it will be
able to route better than itself. This is what we call in the following the rare
case of routing.
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Fig. 1. A routing table and a routing example

For ensuring the termination of the routing algorithm, at each hop the distance
between the receiver node and the message must decrease. Even in the rare case,
the algorithm will try to route the message to a node closest to the receiver. To
show that the routing algorithm works well we must show that the rare case is
effectively rare.

Figure 1 shows an example of the result of the routing from node 65A1FC
to node D46A1C, with an hexadecimal base and 6 digits. This example comes
from [5].

3 Abstractions and the Use of Probabilist Modelling

In this paper, we developed models of Pastry in order to use them in the tools
studied during the Averroès project [1]. The goal of our work is to compute the
number of hops nb hop needed to route a message, when the Pastry algorithm
works with a significant number of nodes.

We could have used a classical model checking tool, developing an exact model
of the behaviour of individual nodes, and trying to have an exhaustive simulation
of the complete behaviour of Pastry. But such a modelling will have been impos-
sible for a realistic number of nodes because of the well-known state explosion
problem. A probabilist modelling enables properties for the whole behaviour of
the system to be derived even for important sizes. In our model, the complexity
of the nodes’ states is abstracted by some probabilist predicates that we propose
below.

Such probabilist modelling implies that we define the nb hop function directly
as a function and not as an emerging property of the individual behaviours of
nodes. This makes it necessary to abstract irrelevant points for defining nb hop.
This is what we will study in this section.
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3.1 Defining Distances as an Abstraction

Modelling each node with their own routing tables is not possible. The size of
the model will prohibit the use of any kind of tools for a realistic number of
nodes. So we need to define an abstraction of the system that will enable us to
avoid to use an explicit definition of routing tables.

If we assume that the nodes are equally dispatched on the ring, we can also
assume that the routing tables look sensibly the same in all the nodes. This
assumption is dependent upon the quality of the hashing function used for pro-
ducing the Pastry identifier at the node initialization. This leads us to assume
that the routing scheme does not depend upon the Pastry identifiers of the con-
cerned nodes but upon the distance between the sender and the receiver whatever
their locations are in the ring. This is the main idea behind our modelling of
Pastry. We abstract the identifiers of nodes and consider a routing in term of
distances.

Consider the routing from the node s = 20322102 to the node r = 32102101.
In a perfect routing scheme, s will send a message to the node in the third case
of the first line of its routing table (for example, s1 = 30210130). Then, this
node will send the message to the node in the second case of the second line of
its routing table (for example s2 = 32012212). It will then continue until a node
sn will have the receiver r = 32102101 inside its Leaf data.

We consider this routing scheme the following way: we need to route to a
node distant of 11213333, which is the distance between s and r (here r − s).
After the first hop, the message will be in the node s1. The distance between
this node and the receiver will then be 01231311 and in the node s2 the distance
is 00023223.

By only considering the distance between nodes, we can abstract node iden-
tifiers. We also need to model the routing algorithm to use only distances:

– If the distance is small enough, the receiver should be in the Leaf list of the
node. After one hop, the routing should end.

– If the distance is bigger, the algorithm will use the routing table to send the
message to a node that shares the longest same prefix than the identifier
of the receiver. If we consider it in terms of distance, we will say that the
distance decreases by at least of one digit.

– In the rare case, the distance is unchanged. The number nb hop is increased
but the distance is not modified.

This concept of “small enough” that we just introduced implies that we need
to use a probabilist modelling. If we used a traditional exact modelling and
simulation, even talking in terms of distance, we will need to define exactly
whether the receiver is or not close enough for being in the Leaf list. Hence,
our abstraction of identifiers in terms of distances will not have been powerful
enough for studying a real-size Pastry system. By defining probabilist predicates,
we can abstract completely the mechanism for deciding whether a node is or is
not in the Leaf list of another one.
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3.2 A Predicate for Modelling Leaf Lists

According to our assumption of an homogeneous distribution of the nodes around
the ring, we can compute the average distance between two nodes: Bl

nb node . If we
note the node identifier in the base B with l digits, there are Bl identifiers so
the length of the ring is Bl. If there are nb node nodes on the ring, the average
distance between two nodes is Bl

nb node . This allows us to define a predicate to
decide whether a node a is in the Leaf set of the node n: In Leaf(a, n) ∼=
dist(a, n) < Bl

nb node .L
2 where L is the number of elements in the set Leaf .

This predicate is an approximate way to check the presence of a node in
a Leaf set. We can say that sometimes, if there is a concentration of nodes
in a part of the ring, the averrage distance between two nodes in this part
of the ring will be less than Bl

nb node . Hence, the predicate may answer in this
case with erroneous positive answers. On the contrary, if the node is in a part
where there are less nodes in the ring, the predicate may give false negative
answers. This predicate is a good first approximation of the real behaviour of
the algorithm, depending upon the performance of the hashing function. We
could refine it by taking into account a probabilistic distribution of nodes up the
ring.

The first version of In Leaf takes into account two nodes a and n. But, in
the following, we don’t take into account individual nodes. Hence, we define a
predicate that is true for nodes that are situated at a distance d from each other:
In Leaf(d) ∼= d < Bl

nb node .L
2 .

3.3 A Predicate for Modeling Routing Tables

The Can Route predicate is a way to model the routing table. We propose to
abstract all the routing tables of all the nodes by the completeness rate of each
line of the tables. We define Ti as the number of filled entries in the lines of index i
of all the routing tables. This allows us to define a probabilist predicate to decide
whether a node n has a routing information at the line i: prob(Can Route(i)) ≈

Ti

B.nb node where B.nb node is the number of all the entries in line i of all the
routing tables. Actually, there are B entries to fill in each line of each routing
table of the nb node nodes.

This fraction represents the probability that an entry is filled in the routing
table of a node. To check if a message can be routed using the line i of a routing
table, we try the probability Ti

B.nb node . If it’s a winning try, the message is routed.
If it’s a failed try, we face a rare case.

Once again, we assume that the completeness of the routing table lines is ho-
mogeneous. The probabilist predicate will represent the real state of the routing
tables if there is an homogeneous repartition of the filled entries in the lines of
routing tables.

This probabilist model of the routing table may appear a bit unrealistic but,
most of the time, peer-to-peer algorithms use indeterministic systems. Actually,
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lots of well-known issues of distributed algorithms (like election problems or
livelocks) are solved by introducing an indeterministic behavior that implies
the stability of the system in time. So, introducing probabilities in the model
of the specification of the Pastry algorithm looks particularly adapted to us.
Moreover, classical software analysis tools are inefficient for dealing with this
type of algorithm. Although they can handle a strong abstraction of the system,
the result that can be expected will not reflect the complexity of the system.
And if we slightly abstract the system in order to get the result we expect, the
classical tools will not be able to handle the model. With a probabilist model,
we get the result in a quite reasonable time, that is in agreement with the results
of [9, 10] among others.

4 Models

We define two models, a reference one describing a perfect routing and a more
precise probabilist one.

4.1 Reference Model

The reference model was created to compare its results to the routing table
model that we present in the next subsection. This reference model gives the
theoretical behaviour of a routing in the Pastry protocol. For this, we assume
in this model that all the entries of the routing tables are filled and there is no
rare case.

/* start of routing */
d = random (max_dist) ;
nb_hop = 0 ;
while (! In_Leaf(d)) {

/* the message is always routed */
d = d / B ;
nb_hop ++ ;

}
/* here, the receiver is In_Leaf, this is the last hop */
nb_hop ++ ;
/* end of routing */

At each hop, the model follows a law in logB. This means that the distance
is divided by B until it becomes less than Bl

nb node .L
2 . In this case, the routing

node should have the receiver in its Leaf set and can route in one hop.
This model is written with no more than 10 lines of code and doesn’t contain

any probability. But it was useful for us as a good evaluation of the CPU usage
needed to make the figures we show in the next section. It is also the reference
to compare with the result of the next, more precise, model.
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4.2 Routing Table Model

In this model, we introduce our abstraction of the routing tables. The algorithm
becomes now probabilist.

/* begin of routing */
d = random (max_dist) ;
nb_hop = 0 ;
while (! In_Leaf(d)) {

if (Can_Route(log(d))) {
/* the message is routed */

d = random (B^log(d)) ;
} /* else rare case */
nb_hop ++ ;

}
/* here, the receiver is In_Leaf, this is the last hop */
nb_hop ++ ;
/* end of routing */

The probabilistic predicate Can Route returns true or false depending of an
internal random try of the probability Ti

B.nb node . The log returns the logarithm
in the base B. The logarithm of the distance is approximatively the line where
the routing node has to search the entry to continue the routing sheme.

This code represents a routing scheme according to a number of nodes and
a completeness of the routing table. We now have to model the filling of the
routing tables depending upon the number of nodes in the system, since the
Can Route predicate depends upon the filling rates Ti. We use for it the array
defined in the previous subsection Ti which represent the number of filled entries
in the line i of the routing tables.

For each insertion of a new node, the system performs a routing from the
closest node of the newcomer in terms of network distance to the closest node in
terms of Pastry identifier. Let’s assume that these two nodes can be any of the
nodes present on the ring. The Pastry algorithm implies that all of the nodes
involved in this route could update the routing table of the newcomer. But we
must pay attention that not all the nodes will contribute to fill all the lines of
the routing table of the newcomer. For instance, with the example proposed in
the section 3.1, the node s = 20322102 will contribute to the first line of the
routing table of r = 32102101, but not to the following ones, since the node s is
situated in the third quadrant of the ring, and the lines of the routing table of
r greater than one would need information for the fourth quadrant (where r is
situated). The node s1 = 30210130 would contribute for its part to the two first
lines of the routing table of r.

We propose to model the update of the routing tables in the following way.
During a routing scheme, at each step of the route, we keep a trace of the number
of nodes that contribute to the update of each line of the newcomer. Let’s call
this number Ui for the line i. This number is computed by comparing the number
of digits shared between the newcomer and the node.
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At the end of the routing scheme, we have for each line of the newcomer the
number of nodes that can possibly fill an entry. For each of those entries, we
try Ui times a Can Route(i) predicate. If there is a winning try, the entry in
the newcomer is filled. In our model, we increment the number of filled entries
by one. This means that we increment Ti by one. If there is no winning try,
we don’t modify Ti. This means that no entries are found to fill the newcomer.
The difficult part is when some tries failed and there is at least one winning
try. The newcomer is filled by the node that wins its try, but as the newcomer
also provides its routing table to the involved node, the failed node will also be
updated. To model it, we increment Ti by the number of failed tries. We call
this way to update the routing table the “share” method.

We should not forget the second way to update the routing table. We have
already seen that the Leaf set must be updated when a new node is inserted in
the ring. But the data contained in those Leaf sets can also fill some entry in
the routing tables. To model it, we try the probability that an entry in the Leaf
set fills a hole in the routing table. This probability is the probability that the
node has no entry; in other words, it’s the probability that it can’t route.

For each new data in the Leaf set, we try one Can Route(i) with the i de-
pending upon the average distance in the Leaf set. In case of a failed try, the
entry is filled and we increment Ti. We do it 2.L times with L the size of the
Leaf set and two times because the newcomer updates its Leaf set but an entry
representing the newcomer is also added in the the Leaf set of the L closest
neighbours of the newcomer. This way to update the routing table is called the
“Leaf” method.

5 Result of the Model

Those two models were evaluated with two different tools: PRISM [11,12] and
APMC [8,13]. Our goal is to compute the probability that a Pastry system is in
a given state. A system state is defined as a tuple (nb node, nb hop, T1, . . . , Tl).
Hence, we can compute the probability that routings are made in nb hop for a
Pastry system made of nb node nodes with routing tables filled by Ti data.

The first tool, PRISM, computes an exact probability for the system to be in
a given state, whereas APMC simulates the model as many times as it is needed
to get some approximate probabilities.

We study two figures that appear to us significant: the quality of the rout-
ing protocol and the routing table completeness. The model was made using
identifiers written on 8 digits with a base 4 with a number of nodes up to 300.

5.1 Quality of the Routing Protocol

The quality of the routing protocol is showed by the Figs. 2 and 3. Our graphs
show the following: each curve is given for a number of hops; the horizontal
dimension is the number of nodes, and the vertical one is the probability.

Hence, for a given number of nodes, tracing a vertical line, each time you
cross one of the curves you obtain the probability that a routing is made in the
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Fig. 2. Results for the reference model
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Fig. 3. Results for the routing table model

corresponding number of hops. Figure 2 shows the graphs obtained with the
reference model described in Sect. 4.1, and we note for instance, that with 100
nodes, the percentage of routings done in 3 hops is 50%, the percentage of
routings in 4 hops is around 35%, and it leaves 15% for routings in 1 or 2 hops.

Those first results must be compared with the results extracted from the sec-
ond models defined in Sect. 4.2. Figure 3 shows the data we get from this model
after simulation. We can see that the graphs decrease for the following values of
node: 4, 16, 64 and 256 that correspond to the increase of (log)B(nb node). We
show in this way that the DHT routing protocol follows a law in (log)B(nb node)
despite the fact that there may be some holes in the routing tables of the nodes.
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This is the most important result from a practical point of view, since it gives
guarantees upon the behaviour of Pastry systems in the large.

We can also notice that the decrease of the curves obtained from the second
model is inferior to the decrease for the first one. We may deduce that the routing
is better than what we expect. For instance, for 100 nodes, the rate of routing
in 4 hops is only 35% for 45% on the reference model. This can be explained
because we used a really low base in our models: only 4. So the probability that,
with one hop, we directly jump to the good part of the ring and save one hop
is 1/4. If we used a larger base (the 16 base for instance), the difference between
the two graphs should be less significant. But unfortunately, increasing the base
is not a easy thing to do in our modelling choice. The limitation comes from the
integer encoding in the model-checker and the dramatic influence it has in terms
of model size.

5.2 Quality of the Routing Tables

Figure 4 shows the completeness rate of the routing table for different numbers
of nodes and for each line of the tables. There are eight curves since we work
with a length of 8. For a given number of nodes, tracing a vertical line will cross
successively the 8 curves, giving the filling rate Ti for the corresponding line of
the tables. The line number 8 corresponds to the more significant digit and is of
course very quickly filled. The line number 6 will correspond to the lines where
nodes get the information of the nodes sharing 2 digits with themselves.

We can show up to three phases in the update process of the routing tables.
We recall that there is two ways of updating the routing tables and increasing
the filling numbers Ti as we have seen in Sect. 4.2, the “share” method and the
“Leaf” one.

1. First, the minimum for the filling rate for all curves is 25% since each node
is its own representative in one of the four subdivisions of the eight lines of
its own routing table.

2. The routing table begins to be updated when there are enough nodes in
the ring so the probability that a node taking part in a routing enters your
routing table is non zero. For instance, when there are 16 nodes, the graph 6
begins to go up. This is caused by the “share” update method.

3. The “Leaf” update method will be used to fill up the routing table when
the average distance between two nodes implies that the Leaf entries for
the addition of all nodes almost fill completely the line. When there are 64
nodes, the graph 6 dramatically increases.

4. The update made by sharing the routing table permits the hole in the routing
tables to be filled in the last phase. The updates made following the “Leaf”
method only takes place in a failed routing. When the filling is almost com-
plete, this method is almost never used and this is the “share” method that
prevails upon.

From this observation, we can deduce that the two modes of update are needed
and complementary to ensure a good quality of the routing. Even if the update
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Fig. 4. Routing table completeness

made using the “Leaf” method may appear inefficient, it increases in a significant
way the rate of completeness of the routing table. But this method has its limit
and, around 80% of filling rate, the curves slow down. There, the second way of
filling the holes, sharing the routing tables, allows the rate to reach 100% and
fills the holes left by the “Leaf” method.

We can also deduce it from the model we choose. With the “Leaf” method,
we increment the entry when the Can Route try fails. This method updates the
routing table when the rate of completeness is low. With the “share” method, we
fill the holes when we get some winning tries. This method has a real influence
when the rate is high. This observation was verified by disabling each update
method in the model.

5.3 Discussion About the Results

Using two models, we have studied the behaviour of the Pastry protocol. We re-
tain of this experiment a better understanding of this kind of algorithm, which
is in line with the previous results obtained by the designers of Pastry. In partic-
ular, we confirm that the number of hops for routing is an increasing logarithmic
function of the number of nodes.

The successive refinements we made to handle all the behaviours of the pro-
tocol support our belief that this kind of protocols are partially insensitive to
the errors that may occur during the development of this kind of distributed
application. In general, the peer-to-peer protocols that try to immunize them-
selves against faults are likely to present this property. For instance, the Pastry
protocol can route even if the “Leaf” method of update is not implemented. The
quality of this routing is degraded compared to a nominal behavior but it will
still be able to route the message. Consequently, an eventual lack of accuracy of
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our models can be hidden despite the fact that the model behaves in the way
we expect from the theory.

The same phenomenon occurs with an implementation of this kind of protocol.
It may contain some errors despite the fact that the test of the application
gives good results. According to this fact, validating such an application using a
testing method appears a bit weak to us. A misbehaving implementation can be
hidden by the fault tolerance of the system. This implies that, when there are
failures, it can be first hidden by the intrinsic fault tolerance of the protocol, but,
when failures will overrule the correct behaviour, it will be difficult or impossible
to deduce the chain of events that originally led to failure. Such fault-tolerant
systems are clearly hard to debug.

5.4 Discussion About the Tools’ Performance

We have designed models of Pastry using parameters for the base B and the
number of digits l of identifiers. Those parameters imply an upper bound of Bl

upon the number of participating nodes in the Pastry system. A realistic size for
those parameters would be B = 16, working in hexadecimal, and l = 8, working
with the ANSI C integer datatype. This leads to more than 40 billion identifiers.

For our study of Pastry, we used B = 4 and l = 8. The computations for
the simple model (see Sect. 4.1) took one day with PRISM and several hours
with APMC. We recall that PRISM aims to compute exact probabilities whereas
APMC uses a simulation to obtain results. The computations for the more real-
istic model failed for PRISM because of the size and took one day for APMC.

We can see here that it is possible to compute probabilistic model checking
but that we had to make some abstractions for being able to use the model
checking tools. The simplification which has the more influence is the use of
a small base B. As we have discussed in Sect. 5.1, this implies better routing
results in the routing table model than in the reference one. The probabilistic
model also allows us to abstract the identifiers of the nodes and only take into
account the distances. This abstraction reduces the size of the model and using
model checker become possible.

6 Conclusions and Future Works

For us, this experimentation leads to several conclusions. First, even if PRISM
can compute exact probabilities, this tool has difficulties for coping with real-
istic size of models. When the number of nodes increases, the computing time
increases dramatically and we are no more able to get some results. But if we
really need an exact computation of the probability, it is not possible to avoid
the use of this type of tool.

The second tool, APMC, computes the probabilities using successive iterations
of the model. The theory explains that, by increasing the number of iterations,
we can reach an approximation of the probability as close as we want. This
approach presents several advantages for us. First of all, it can handle a greater
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number of nodes. Secondly, we can get from the tools some partial results during
the computation. So even if the computation is not completely finished, some
data can be analyzed.

These two tools that we used in our experiment lead to significant results if
the model analyzed fit the tools requirements. This makes us think that they
probably can be used by specialists in the field of specification and abstraction
to support the concept teams, but could not be used directly by those teams.

The results obtained with these tools are compatible with those provided
by Microsoft. We have also shown the stability of the routing using the DHT
protocol. Finally, we proved the great influence that the two kinds of update
methods have to the quality of the routing.

We think that it will be really interesting to use this kind of tool to complete
the result of some test or model-check inside software validation tools. This
should be really adapted to the validation of distributed algorithms, in particular
those that provide some fault tolerance and auto-stabilization properties. For
instance, using this kind of tool, we can model check the behaviour of the Pastry
nodes according to some model of the stability of the nodes. Actually, each node
will be hosted by a consumer that can login and logout from the Pastry node at
any time. This might be modeled also by a probabilist model. Using this model,
we propose to prove that the routing protocol ensures that all the nodes can
be reached from everywhere in the ring and there is no partition issues in the
ring.
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Abstract. OpenComRTOS is one of the few Real-Time Operating Sys-
tems (RTOS) for embedded systems that was developed using formal
modeling techniques. The goal was to obtain a proven trustworthy com-
ponent with a clean and high performance architecture useable on a wide
range of networked embedded systems. The result is a scalable commu-
nication system with real-time capabilities. Besides a rigorous formal
verification of the kernel algorithms, the resulting architecture has sev-
eral properties that enhance the safety and real-time properties of the
RTOS. The code size in particular is very small and typically 10 times
less than a typical equivalent single processor RTOS.

1 Problem Statement

Following a market research study for the European Space Agency in 2004, it
was discovered that the majority of the RTOS (Real-Time Operating Systems)
on the commercial as well as on open source market, cannot be verified or even
certified, e.g. according to the DoD 178B or IEC61508 standards. This is due
to a non-systematic software development approach, often bottom-up and with
little documentation. This is remarkable as RTOS are widely used in embedded
applications, often requiring properties of high reliability and safety. Similarly,
software engineering is often done in a non-systematic way although well defined
Systems Engineering Processes exist [3]. The software is rarely proven to be
correct while formal model checkers exist. In the context of a unified systems
engineering approach [4] we undertook a research project to follow a stricter
methodology including formal model checking to obtain a network-centric RTOS
as a trustworthy component. The availability of a network-centric runtime layer
is important to support a unified semantic view of “Interacting Entities” for all
activities in the Systems Engineering domain when developing a given system.

2 General Requirements for OpenComRTOS

The history for this project goes back to the early 1990’s when a distributed
real-time RTOS called Virtuoso (Eonic Systems) was developed for the INMOS
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transputer. This processor had build in support for concurrency and interprocess
communication and was enabled for parallel processing by way of 4 communi-
cation links. Virtuoso allowed such a network of processors to be programmed
in a topology transparent way. Later on the software evolved and was ported
from single chip microcontrollers to systems with over a thousand Digital Signal
Processors until the technology was acquired by Wind River and after a few
years removed from the market.

The motivation for the OpenComRTOS project was to use the lessons ac-
quired from 3 generations of Virtuoso development. These lessons became part
of the requirements. We list the most important ones:

Scalability: The RTOS should support a range of systems from very small
single processor systems to widely distributed processing systems intercon-
nected through external networks like the internet.

Network-centric: Theabovescalability requirements forcedata-communication
to be central in the architecture, and also that the developed software is inde-
pendent of the mapping onto the network topology.

Efficiency: In multi-processing systems the essence is the communication. From
the RTOS point of view the challenge is to keep the latency to a minimum,
while maximum performance is achieved when most of the critical code re-
sides in the limited amount of on-chip fast memory.

Small code size: This has a double benefit: performance and less complexity
with potential reduction of sources of errors and side-effects.

Trustworthy: As testing of distributed systems becomes very time consuming,
it is mandatory that the system software can be trusted from the start.
As errors typically occur in “corner cases”, the use of formal methods was
deemed necessary.

Maintainability and ease of development: The code needs to be clear and
simple and facilitate the development of components such as drivers, which
have often been the weak point in system software.

In the context of the Systems Engineering methodology, the use of common
semantics during all activities is crucial. Hence the final goal is to be able to
generate most of the implementation code from the modeling and simulation
phase. Considering the use of an “Interacting Entities” paradigm, this imposes
the use of a runtime environment that supports concurrency and synchroniza-
tion/communication in a native way between the concurrent Entities.

3 Initial Architecture

While the above mentioned Virtuoso was a successful product, the goal was to
improve on its weaknesses. The Virtuoso architecture was unique as it had two
kernels inside. The lightweight nanokernel was mainly used for I/O and interpro-
cessor communication while the microkernel provided priority based preemptive
scheduling for user Tasks. This architecture was performant but very hard to port
and maintain. Hence for OpenComRTOS a layered architecture was adopted but
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Fig. 1. OpenComRTOS-L0 view

based on semantic layering (see Fig. 1). At the lowest level the functionality is
limited to priority based preemptive multitasking with Tasks exchanging stan-
dardized Packets using an intermediate entity we called Ports. Hence, Tasks
can synchronise and communicate using Packets and Ports. The Packets are the
essential workhorse of the system. They have header and data fields and are
exclusively used for all services, rather than invoking e.g. function calls or using
jump tables. Hence, it becomes straightforward to provide services that operate
in a transparent way across processor boundaries. Packets are also very efficient
as the kernel operation often comes down to shuffling around the packets (using
handlers) between the system level datastructures.

At the next semantic level (L1) we wanted to add more traditional RTOS ser-
vices like events, semaphores, queues, mailboxes, resources, etc. The concept was
to achieve this using a second level of Packets whereby L0 Packets became full
headers. This process is repeated for the next level L2 where we aim for support
needed to address widely distributed nodes whereby the communication delay
becomes substantial and the hard real-time behaviour becomes soft real-time.
Such a level also requires support for mobility of code and of Entities. Finally, it
was envisioned to keep the architecture simple and modular by developing the
kernel as a Task as well as all drivers. All these Tasks have a ‘Task input Port’
for accepting Packets from other Tasks. This has some unusual consequences
like the possibility to process interrupts received on one processor on another
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Fig. 2. Open License SE methodology

processor, the kernel having a lower priority than the drivers or even having
multiple kernel Tasks on a single node.

4 Systems (and Software) Engineering Approach

The Systems Engineering approach from Open License Society (see Fig. 2) is a
classical one as defined in [4] but adapted to the needs of embedded software de-
velopment. It is first of all an evolutionary process using continuous iterations. In
such a process, much attention was paid to an incremental development requir-
ing regular review meetings by several of the stakeholders. On the architectural
level, the system or product under development is defined under the paradigm
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of “Interacting Entities”, which maps very well on an RTOS based runtime
system. Applied on the development of OpenComRTOS, the process was started
by elaborating a first set of requirements and specifications. Next an initial
architecture was defined. Starting from this point on, two groups started to work
in parallel. The first group worked out an architectural model while a second
group developed initial formal models using TLA+/TLC [2]. These models were
incrementally refined.

Note that no real attempt was made to model the complete system at once.
This is first of all not possible in a generic way because formal TLA models
cannot be parameterised. For example, one must model a specific set of tasks
and services and very quickly the state explosion limits the achievable complexity
of such models. Hence we modeled only specific parts, and a model was build
for each class of services (Ports, Events, Semaphores, etc.). This was sufficient
and has the benefit of having very clean, orthogonal models.

At each review meeting between the software engineers and the formal mod-
eling engineer, more details were added to the models, the models were checked
for correctness and a new iteration was started. This process was stopped when
the formal models were deemed close enough to the implementation architec-
ture. Next, a simulation model was developed on a PC (using Windows NT as
a virtual target). This code was then ported to a real 16-bit microcontroller [5].
On this target a few target specific optimizations were performed on the im-
plementation, while fully maintaining the design and architecture. The software
was written in ANSI C and verified for safe coding practices with a MISRA rule
checker [8].

5 Lessons from Using Formal Modeling

The initial goal of using formal techniques was to be able to prove that the
software is correct. This is an often heard statement from the formal tech-
niques community. A first surprise was that each model gave no errors when
verified by the TLC model checker. This is actually due to the iterative na-
ture of the model development process and partly its strength. From an initial
rather abstract model, successive models are developed by checking them us-
ing the model checker and hence each model is correct when the model checker
finds no illegal states. As such, model checkers can’t proof that the software
is correct. They can only proof that the formal model is correct. For a com-
plete proof of the software the whole programming chain should be verified
as well as the target hardware be modeled and verified as well. This is an
unachievable result due to its complexity and the resulting state space explo-
sion. It was nevertheless attempted in the Verisoft [6] project. The model itself
would be many times larger than the software being developed. It indicates
however that if we would make use of verified target processors and verified pro-
gramming language compilers, the model checker becomes practical as limited
to modeling the application.
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Other issues were discovered in relation to the use of formal modeling. A first
issue is that the TLC model checker declares every action as a critical section,
whereas e.g. in the case of a RTOS, many components operate concurrently and
real-time performance dictates that on a real target the critical sections are kept
as short as possible. While this dictates the avoidance of shared data structures,
it would be helpful to have formal model assistance that indicates the required
critical sections.

The final issue is the well known problem of state space explosion. Just model-
ing a small OpenComRTOS application the TLC model checkers has to examine
millions of states, exponentially taking more time for every Task added to the
model. This also requires increasing amounts of memory and limits the model
checking to subsets of the whole architecture.

6 Benefits Obtained from Using Formal Modeling

As was outlined above, the use of formal modeling was found to result in a
much better architecture. This benefit is the result of the process of succes-
sive iteration and review, but also because formal models checkers provide a
level of abstraction away from the implementation. In the project we found
that the semantics associated with specific programming terms involuntarily
influence choices made by the architecting engineer. An example was the use
of both a waiting list and a buffer for a Port, which is one of the main con-
cepts of OpenComRTOS. A waiting list is associated just with a waiting ac-
tion, but one overlooks that it also provides buffering behavior. Hence, one
waiting list is sufficient, resulting in a smaller and cleaner architecture. The
formal modeling and abstract level has helped to introduce, define and main-
tain orthogonal concepts in the architecture. Orthogonality is the key to have
small and safe, i.e. reliable, designs. Similarly, even if there was a short learning
curve to master the mathematical notation in TLA, with hindsight this was an
advantage vs. e.g. using SPIN [7] that uses a C-like syntax. The latter leads
automatically to thinking in terms of an implementation code with all its de-
tails whereas the abstraction of TLA helped to think in more abstract terms.
This also highlights the importance of specifying first before implementation is
started.

A final observation is that using formal modeling techniques turned out to
be a much more creative process than the mathematical framework suggests.
TLA/TLC as such was primarily used as an architectural design tool, aiding
the team in formulating the ideas and testing them in a rather abstract way.
This was proven to be a team work with a lot of human interaction between
the members of the team. The formal verification of the RTOS itself was ba-
sically a side-effect of building and running the models. Hence, this project
has shown how a combination of team work with extensive peer-review, formal
modeling support and a well defined goal can result in a “correct-by-design”
product.
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7 Novelties in the Architecture

OpenComRTOS has a semantically layered architecture. At the lowest level (L0)
the minimum set of Entities provides everything that is needed to build a small
networked real-time application.

The Entities needed are Tasks (having a private function and workspace),
an Interaction Entity we called an L0 Port to synchronize and communicate
between the Tasks. Ports act like channels in the tradition of Hoare’s CSP
but allow multiple waiters and asynchronous communication. One of the Tasks
is a kernel Task scheduling the Tasks in order of priority and managing and
providing Port based services. Driver Tasks handle inter-node communication.
Pre-allocated as well as dynamically allocated Packets are used as a carrier for
all activities in the RTOS such as: service requests to the kernel, Port synchro-
nization, data-communication, etc. Each Packet has a fixed size header and data
payload with a user defined but global data size. This significantly simplifies the
management of the Packets, in particular at the communication layer. A router
function also transparently forwards Packets in order of priority between the
nodes in a network.

OpenComRTOS L0 therefore is a distributed, scalable and network-centric
operating systems consisting of a packet-switching communication layer with a
scheduler and Port-based synchronization. This architecture has proven to be
very efficient. For example, a minimum single processor kernel can have a code
size of less than 1 Kbyte, with 2 Kbytes for the multi-processor version.

In the next semantic level (L1) services (see Fig. 3) and Entities were added
as found in most RTOS:

Boolean events, counting semaphores, FIFO queues, resources, memory pools,
mailboxes, etc. The formal modeling has allowed defining all such Entities as
semantic variants of a common and generic entity type. We called this generic
entity a “Hub”. In addition, the formal modeling also helped to define “clean”
semantics for such services whereas ad-hoc implementations often have side-
effects. In Table 1 we summarise the semantics.

The services are also offered in a non-blocking variant ( NW), a blocking vari-
ant ( W), a blocking with timeout variant ( WT) and an asynchronous variant
when this makes sense. All services are transparent for the topology and the
network mapping of Task and kernel Entities onto this network. See Tables 1
and 2 for details on the semantics.

As the use of a single generic entity allowed a much greater reuse of code,
the resulting code size is at least 10 times less than for an RTOS with a more
traditional architecture. One could of course remove all such application-oriented
services and just use the Hub based services. This has however the drawback that
the services loose their specific semantic richness. For example resource locking
clearly expresses that the Task enters a critical section in competition with other
Tasks. Also erroneous runtime conditions like raising an event twice (with loss of
the previous event) are easier to detect at the application level than when using
a generic Hub.
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Table 1. Semantics of L1 Entities

L1 Entity Semantics
Event Synchronisation on Boolean value.

Waiting list on both sides.

Counting
Semaphore

Synchronisation with counter allowing
asynchronous signaling.

Port Synchronisation with exchange of a
Packet.

FIFO queue Buffered communication of Packets.
Synchronisation when queue is full or
empty.

Resource Event used to create a logical critical
section. Resources have an owner Task
when locked

Critical
Section

Entity creating a global critical section
based on locking multiple resources.

Memory
Pool

Linked list of memory blocks protected
with a resource

Mailbox Synchronising entity with matching filter
on Task ID. Communication happens as
side-effect.

Channel Asynchronous communication between
Tasks with buffering using memory pools.
Communication as a side-effect.

In the course of the formal modeling we also discovered weaknesses in the
traditional way priority inheritance is implemented in most RTOS and we found
a way to reduce the total blocking time. In single processor RTOS systems, this
is less of an issue but in multi-processor systems, all nodes can originate service
requests and resource locking is a distributed service. Hence the waiting lists can
grow much longer and lower priority Tasks can block higher priority ones while
waiting for the resource. This was solved by postponing the resource assignment
till the rescheduling moment.

Finally, by generalization, also memory allocation has been approached like
a resource locking service. In combination with the Packet Pool, this opens new
possibilities for a safe and secure management of memory. For example, the
OpenComRTOS architecture is free from buffer overflow by design.

For the third semantic layer (L2), we will add dynamic support like mobility
of code and of kernel Entities. A potential candidate is a light weight virtual
machine supporting capabilities as modeled in pi-calculus [9]. This is the subject
of further investigations and will be reported in subsequent papers.

8 Inherent Safety Support

By its architecture the L0 and L1 semantic layers are all statically linked, hence
an application specific image will be generated by the compiler tools. As we
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Table 2. Service synchronization variant

Services
variants

Synchronising Behaviour

“Single-phase” services

NW Non Waiting: when the matching
filter fails the Task returns with a
RC Failed

W Waiting: when the matching filter
fails the Task waits until such
events happens.

WT Waiting with a time-out. Waiting is
limited in time defined by the
time-out value.

“Two-phase” services

Async Asynchronous: when the entity is
compatible with it, the Task
continues independently of success
or failure and will resynchronize
later on. This class of services is
called “two-phase” services.

don’t consider security risks for the moment, our concern is limited to verifying
if the code is inherently safe.

A first level of safety is provided by the formal modeling approach. Each
service is intensively modeled and verified with most “corner cases” detected
during design time prior to writing the code.

A second level is provided by the kernel services. All services have well defined
semantics. Even when asynchronously used, the services become synchronous
when available resources become depleted. At such moment a Task becomes
waiting allowing other Tasks to proceed and free up resources (like Packets,
space in the buffers, etc.). Hence, the systems becomes “self-throttling”.

A third level is provided by the data structures, mostly based on Packets. All
single-phase services uses statically allocated Packets that are part of the Task
context. These Packets are used for service requests, even when going across
processor boundaries. They also carry the return values. For two phase services
Packets must be allocated from a Packet Pool. When the Pool is empty, the
system will start to throttle until Packets are released. Another specific feature of
the architecture is that buffers cannot overflow. In the worst case the application
programmer will not have defined enough Packets in the Pool and buffers will
stop growing when all Packets are in use.

A last level is the programming environment. All Entities (at L0 and L1)
are defined statically so they are generated together with all other system level
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datastructures by a tool and hence no Entities can be created at runtime. Of
course, dynamic support at the L2 level will require extra support. However this
can only be achieved reliably with hardware support e.g. to provide protected
memory spaces. The same applies to the use of the stack spaces. In OpenCom-
RTOS interrupts are handled on a private and separate stack so that the Task’s
stack spaces are not affected. On the MLX16 such a space can be protected but
it is clear that such inexpensive mechanism should be a must on all embedded
processors for all stack spaces. A full MMU is not only too complex and too
large but it is not even needed. The kernel also has various threshold detectors
and provides support for profiling, but the details are outside the scope of this
paper.

9 Measurements on Real Execution Targets

We shortly summarize the results obtained. Although fully written in ANSI-C
(except for the Task context switch), the kernel could be reduced to less than 1
Kbytes single processor and 2 Kbytes with multi-processor support (measured
on a 16bit Melexis microcontroller). A sample application with two Tasks and
two Ports required just 1230 bytes of program memory and 226 bytes of data
memory (static and dynamic).

When adding L1 services (events, semaphores, resources and FIFO queues)
the code increased with less than 1 kBytes. An overview in given in Table 3.
All figures are for non hand optimised code written in ANSI C compiled on

Table 3. OpenComRTOS L1 code size figures

MP FULL SP SMALL
L0 L1 L0 L1

L0 Port 162 132

Hub
shared

574 400

L1 Port 4 4

Event 68 70

Sema-phore 54 54

Resource 104 104

FIFO 232 232

Resource
List

184 184

Total L1
services

1220 1048

Grand Total 3150 4532 996 2104

MP Full: with router, no driver Tasks
SP Small: single processor, no router
All services: ( W, WT, NW, Async)
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the MLX16 16-bit microntroller. The reader will recognize first of all that the
architecture has very little penalty for providing network enabled services.

A second port was undertaken to the Windows NT platform, serving as a sim-
ulator as well as host node. Further Ports are underway to MicroBlaze, SPARC
and the Cell processor.

On the MLX16 microcontroller a processor specific version was developed.
This version is limited to 16 Tasks and uses some processor specific instructions
to reduce the overhead. Such minimal L0 RTOS could be made to fit in 904
bytes, whereas adding L1 Events, Ports and Resources only added 240 bytes to
the code. Although this microcontroller runs from flash with no cache at about
6.5 Mips, the interrupt latency from a timer interrupt to the first instruction
in a Task where the timer register can be read is only 52 microseconds. For
a round-trip loop between two Tasks sending and receiving Packets using 2
Ports, we measured 10740 loops/second. This is about 93 microseconds for two
Task switches, two L0 SendPacket and two L0 ReceivePacket services. All code,
including the RTOS was compiled using the GCC compiler. The microcontroller
has 4 registers.

A second version was ported on top of Windows NT and using sockets to
simulate internode communication. The same test application as the one on the
MLX16 could be generated for this “virtual” target by recompiling the source
code and linking with the target specific libraries. This demo was transparently
distributed over a number of PCs connected over a LAN. Code size figures and
performance times are not really relevant for this target, but it demonstrates
how a widely distributed and heterogenous network can be supported. Using this
scheme an MLX16 node can read a sensor and transmit it over an UART to a
“host PC” running an instance of OpenComRTOS. This PC then communicates
with another PC over a VPN whereby an operator sends a control command
back to the MLX16.

10 Impact on Software Quality

RTOS kernel code is typically known to be “black art” programming. This is
due to the concurrent and asynchronous nature of the software, direct interfac-
ing to the hardware, context switching and the requirement to produce not only
performant but also compact code. Hence we were curious to see if the formal de-
velopment path we followed would have an impact on the code quality. Therefore
the code was subjected to the MISRA coding rule checker and quality software
metrics of LDRA. The MISRA standard is a set of 140 rules that a program
written in C should adhere to be safe. Most of these rules prevent programmers
from using all the ‘dirty’ tricks, most often with side-effects that C allows. The
source code had no problems passing this check. Also the quality of the source
was very high according to the metrics generated by the LDRA tools. When the
score was lower, it was due to the presence of too many comment lines or when
the source file contained some in-line assembler like the context switch. The con-
clusion is that small optimized code doesn’t need to be hand crafted provided a
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Fig. 4. Quality metrics by LDRA

lot of thought went into defining a clean architecture. The major gain is hence
achieved by defining a globally optimized architecture and less from looking for
punctual optimizations. The results are in Fig. 4

11 Future Developments and Research

Above we already identified the need for the model checkers to detect the minimal
critical sections. Another area of research is how to maintain consistency between
the formal model and the implementation. This will require that the formal
model can be used as a reference and requires that the source is generated
rather than written by the software engineer.

Future OpenComRTOS developments will focus on adding more safety and
security properties to a SW/HW co-design pair of OpenComRTOS and proces-
sor. Formal modeling should contribute in identifying minimum architectures
that still are providing safety and security in the resource constrained domain
of deeply embedded systems.

Another area of interest is to find a better way to separate orthogonally
the priority based scheduling from the logical behavior of the kernel Entities.
For example, the use of priority inheritance supports results in this code being
mixed up in the manipulation of the data structures (e.g. to sort waiting lists).
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This makes the code more convoluted to read and understand while the impact
is only on the timely behavior of the application.

Thirdly, OpenComRTOS will be ported to support the SDL-RT (using Real
Time Developer Studio of PragmaDev). SDL type semantics map very easily on
the communication based services in OpenComRTOS.

12 Conclusion

The OpenComRTOS project has shown that even for software domains often
associated with ‘black art’ programming, formal modeling works very well. The
resulting software is not only very robust and maintainable but also very per-
forming in size and timings and inherently safer than standard implementation
architectures. Its use however must be integrated with a global systems engi-
neering approach as the process of incremental development and modeling is as
important as using the formal model checker itself. The use of formal modeling
has resulted in many improvements of the RTOS properties.

Acknowledgements

The OpenComRTOS project is partly funded under an IWT project for the
Flemish Government in Belgium. The formal modeling activities were provided
by the University of Gent.

References

1. OpenComRTOS architectural design document on:
http://www.OpenLicenseSociety.org

2. TLA+/TLC home page:
http://research.microsoft.com/users/lamPort/tla/tla.html

3. INCOSE: http://www.incose.org
4. Open License Society: http://www.OpenLicenseSociety.org
5. http://www.Melexis.com
6. http://www.verisoft.de
7. http://www.spin.org
8. http://www.misra.org
9. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-

versity Press, Cambridge (1999)

http://www.OpenLicenseSociety.org
http://research.microsoft.com/users/lamPort/tla/tla.html
http://www.incose.org
http://www.OpenLicenseSociety.org
http://www.Melexis.com
http://www.verisoft.de
http://www.spin.org
http://www.misra.org


SDL Design and Performance Evaluation

of a Mobility Management Technique
for 3GPP LTE Systems

Tae-Hyong Kim1, Qi-Ping Yang1, Soon-Gi Park2, and Yeun-Seung Shin2

1 School of Computer and Software Engineering,
Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701 Korea

{taehyong,saintwind}@kumoh.ac.kr
2 Mobile Telecommunication Research Laboratory,

Electronics and Telecommunications Research Institute, Daejeon, 305-350 Korea
{yoyo,shinys}@etri.re.kr

Abstract. Using a common model for both functional verification and
performance evaluation of a network protocol will reduce a considerable
amount of protocol development time and cost. Although there have
been several researches trying to achieve this goal, they have not been
used widely yet especially in industry. This paper shows a case study in
SDL design and performance evaluation of a wireless and mobile technol-
ogy. In order to evaluate our mobility management technique for 3GPP
LTE systems, we designed a simple 3GPP LTE system and its mobility
performance system with pure SDL and Tau performance library. This
paper describes our experience in pure SDL-based performance evalua-
tion with Tau and discusses SDL design and simulation issues for more
efficient performance evaluation with SDL.

1 Introduction

Formal description techniques such as the specification and description language
(SDL) [1] were developed to clearly describe the specification of a network pro-
tocol syntactically and semantically. In addition to that point, they enabled us
to verify the functional correctness of a protocol automatically with powerful
tools supporting them such as Telelogic Tau [2]. Those tools usually provide
functional simulation, validation, and code generation for the development of a
reliable protocol. However, the functional correctness is just a minimal require-
ment of a network protocol; a crucial issue in the development of a protocol is its
performance such as throughput and delays. A simulation-based evaluation with
such performance parameters naturally requires a long time random simulation.
Moreover it usually demands the exact consideration of the physical network en-
vironment such as noise or errors for obtaining more precise and realistic results.
Those are the motivations of network-specific performance simulation tools such
as OPNET [3] or ns-2 [4]. In this situation, a separate modeling and simulation
is required for estimating each of functional and performance properties of a
protocol.

E. Gaudin, E. Najm, and R. Reed (Eds.): SDL 2007, LNCS 4745, pp. 272–288, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



SDL Design and Performance Evaluation 273

In order to overcome this inefficiency, there were several researches trying
to design a performance model of a protocol from its functional model, espe-
cially specified in SDL. Most of them including Timed SDL [5], SPECS [6],
QUEST [7], and SPEET [8] attempted to specify additional information to al-
low time requirements, workload modeling, and/or other performance-related
information. However they have not been used widely due to their incomplete-
ness and/or some weak points. Some of them require additional SDL syntax,
which may weaken the compatibility of a model. They usually have few existing
model libraries for real network protocols and environments, which may require
extensive modeling work for accurate simulation. Simulation time may be very
long due to their functional details. In addition, there also exists a practical diffi-
culty that they usually use their own simulation tools whose stabilities have not
been proved enough with industrial-size network protocols. The coupling of the
SDL model to a well-known performance evaluation tool has also been tried and
ns+SDL [9] is an impressive study where an SDL model can be used directly as
an ns-2 agent.

As a part of the development project of the third generation partnership
project (3GPP) long term evolution (LTE) system [10], we developed a mobility
management technique with simple handover prediction for the intra evolved
universal mobile telecommunication system terrestrial radio access network (E-
UTRAN) mobility. A simple 3GPP LTE system with the proposed technique was
designed in SDL and the functional correctness of that system was verified with
Tau simulator. For performance evaluation of the proposed technique, we did not
have enough time for full performance simulation with OPNET or ns-2 because
that requires massive complete coding of a 3GPP LTE system. We decided to
develop a performance simulation system with pure SDL and Tau’s performance
features before future comprehensive performance evaluation with OPNET. The
above SDL-based performance tools were also considered but actually we did
not feel convinced of their reliability and constant support because they are not
commercial tools.

This paper presents a case study in SDL design and performance evaluation of
a mobility management technique with Tau. To evaluate mobility management
techniques, emulation of user mobility is necessary. SDL timers should be well
managed in an SDL design and simulation with Tau where the SDL timer is the
only delay source. Some other performance simulation issues are also discussed
in this paper such as how to reduce the simulation time, how to manage the
additional performance information skilfully in an SDL model, and how to link
SDL models and simulators to other powerful performance simulation tools.

The rest of this paper is organized as follows. Section 2 introduces our mobility
management technique with simple handover prediction for 3GPP LTE systems.
Our SDL design of a 3GPP LTE system with the mobility management tech-
nique is explained in Sect. 3. Section 4 describes performance evaluation of the
mobility management technique with the explanation of our performance simu-
lation design. We discuss some issues on pure SDL based performance simulation
with Tau in Sect. 5. Finally we conclude this paper in Sect. 6.
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2 Our 3GPP LTE Mobility Management Technique

The 3G evolution project of 3GPP called long term evolution (LTE) and system
architecture evolution (SAE) started in late 2004 and the standardization of
their specifications was scheduled to be finished by 2007. As for the mobility
of 3GPP LTE systems, the intra E-UTRAN mobility is mainly discussed at
present and the intra mobility management entity (MME) / user plane entity
(UPE) handover procedure was defined [11]. This section introduces our mobility
management technique with simple handover prediction for the intra E-UTRAN
mobility.

2.1 Handover Procedure

The standard intra E-UTRAN handover procedure is summarized as follows [11].
The source eNodeB monitors measurement reports from a user equipement (UE)
and decides the handover of that UE to a new cell. It requests the eNodeB of
that target cell to admit the handover of the UE, and if it receives admission
from the target eNodeB, it initiates the synchronization between the UE and the
target eNodeB by sending a ‘Handover Command’ message to the UE. Given a
‘Handover Confirm’ message from the UE, the target eNodeB triggers the path
switching of the MME/UPE in the access gateway (aGW) with a ‘UE Update’
message.

Actually fast and seamless handovers are strongly required for a 3GPP LTE
system because soft handovers are not available due to its orthogonal frequency
division multiple access (OFDMA) technology. Our technique uses handover
preparation with mobility prediction in order to achieve that goal. An outline
of our intra E-UTRAN handover procedure is depicted in Fig. 1. Additional
measurement reports related to the UE movements are defined for mobility pre-
diction. The source eNodeB predicts the best handover cell with those new mea-
surement reports and performs handover preparation with the corresponding
target eNodeB. When the source eNodeB decides the best time for handover, it
initiates the fast synchronization between the UE and the target eNodeB with a
‘Handover Command’ message. We can reduce the handover interruption time
and the handover rejection rate with this technique.

2.2 Handover Prediction Technique

Mobility prediction is often expected a possible solution to fast and seamless
handover with handover preparation. It is usually based on the following two
technologies: time-series analysis such as the Kalman filter [12], and mobility
pattern matching[13]. In spite of its usefulness, it has not appeared in the speci-
fications of current mobile communication systems because those techniques may
be somewhat complex and require more than simple change of the system.

In our technique, we use two simple prediction methods together in order to
increase the accuracy of the prediction and to reduce the prediction cost as well.
If we capture a nonstationary radio signal only in a short time, that part of
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Fig. 1. Our intra E-UTRAN handover procedure (simplified version)

the signal can be considered stationary because the signal strength is related
to user movements subject to the inertia. Our technique uses a simple moving
average technique with a short-length window for short-term signal prediction
under the assumption that the signal-to-noise ratio (SNR) is not so poor. But
sometimes this simple prediction may not be adequate due to a sudden change
of signal caused by exceptional non-inertial movement or strong noise. If user
movements are not purely random but rather habitual, they may be estimated
using past experience. We use a simple knowledge database to supplement the
simple moving average for such a non-stationary but recurrent signal.

Figure 2 shows a simplified SDL-style diagram of the eNodeB’s handover
prediction process. An eNodeB updates the best handover candidate for a UE,
denoted by bHO, when it receives measurement reports from that UE. Those re-
ports are created according to UE’s reporting events including newly defined ones
such as events Rn and 1D’[14]. When bHO is decided, the handover preparation
is performed between the source eNodeB and the target eNodeB corresponding
to bHO. It includes the handover admission control, and the context and radio
resource information exchange for fast synchronization.

A general drawback of handover prediction is unnecessary handover due to
a false alarm, therefore avoiding false alarms is a critical issue in a prediction
technique. In order to achieve that goal we use a simple knowledge database
(KDB) for recording the experience of false alarms. The KDB contains the false
alarm information due to road-based and time-based mobility patterns of each
user. An eNodeB manages the KDB and updates it when the UE movement
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Fig. 2. Handover prediction process of an eNodeB

satisfies the false alarm condition. During the handover preparation, when the
target eNodeB receives a handover preparation request for a UE from the source
eNodeB, it first checks if that request information matches an element of the
KDB. If yes, it refuses that request and may recommend another cell for the
handover according to the KDB information. Then the source eNodeB may re-
quest the handover preparation to the new cell if recommended, or may give up
handover preparation and follow the standard handover procedure.

3 Designing a 3G LTE System with the Mobility
Management Technique

In designing a 3G LTE System in SDL for functional verification and performance
evaluation of the mobility management technique, we used the pure-SDL design
approach for our convenience in management [15]. With this approach, no exter-
nal C-code is used and Tau’s built-in ASN.1 utilities are used to encode and de-
code signalling messages. Our whole SDL designing process was composed of three
sequential phases: basic functional design phase, mobility design phase, and per-
formance design phase. This section covers the first two functional design phases.

3.1 SDL Design of a 3GPP LTE System

We started designing a 3GPP LTE system with the system structure and the
basic signalling functions such as call processing. Figure 3 shows the package
‘LTEBasicPKG’ that includes three main block types for UE, eNodeB, and aGW
of a 3GPP LTE system. The qualifier virtual was placed before the name of each
block type for future redefinitions. We used two ASN.1 files for the signalling
protocols, radio resource control (RRC) and radio access network application
part (RANAP), and the buffer interface package is also used for ASN.1 encoding
and decoding.
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Fig. 3. Basic package for a 3GPP LTE system ‘LTEBasicPKG’

When we designed each LTE node, we generally followed the present standard
protocol stack [11]. As an example, the top-level first-phase design of an eNodeB
is shown in Fig. 4. In that figure, the block ‘SCL’, indicating the signalling
and control layer, is the core protocol layer which covers RRC, RANAP, etc. In
the lower layer design, we mainly focused on their structure according to the
existing standard specifications and did not implement their complete functions
as we did in the last work [15], since the first design phase focused on the basic
signalling functions. Note that two block types, ‘ENB PHY’ and ‘ENB SCL’
for the physical and the signalling/control layers were defined virtual for future
redefinitions at the following phases. After the fist phase design, we checked the
functional correctness of the system for call and multimedia broadcast multicast
service (MBMS) processing with Tau simulator.

3.2 SDL Design of the Mobility Management Technique

At the second design phase, the mobility management technique was added to the
3GPP LTE system design. For better reusability and manageability, we used the
inheritance and specialization in designing the mobility management technique.
Fig. 5 shows the inheritance tree of our whole SDL system. ‘LTEMobFTType’
is a specialized system type for the mobility design, which was inherited from
the basic system type, ‘LTESigFTType’.

As described in Sect. 2, our mobility management technique incorporates
refined measurement management in the UE side for mobility prediction and
prediction-based handover preparation in the eNodeB side. In the UE side, the
physical layer is the main design part at this phase which redefines the first
phase design. Since there is no physical antenna that can provide the strength of
receiving radio signals, we used some static signal strength data only for the func-
tional verification at this design phase. Dynamic generation of signal strength
data based on UE movements was left to the following performance simulation
design. As for the eNodeB side, this design phase focuses on the signalling and
control layer since no specific physical measurements of the eNodeB are used in
our technique. Figure 6 shows a part of eNodeB’s signalling layer design related



278 T.-H. Kim et al.

Fig. 4. Top-level struture of the basic ‘ENB’ block type

Fig. 5. Inheritance tree of the whole SDL system

to handover prediction and preparation. In this design, an eNodeB performs a
handover decision based on the received measurement report according to the
prediction algorithm.

For the system designed at this phase, we also checked the functional correct-
ness of the handover procedure and handover prediction technique. The detailed
results of that functional testing are omitted due to the limited space.
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Fig. 6. Process type ‘ENB DCFECtrlEntity’ redefined for handover prediction

4 Performance Evaluation of the Mobility Management
Technique

For performance evaluation of our mobility management technique, we designed
a simulation scenario and then constructed an SDL system for simulation with
that scenario. This section describes that performance simulation design and the
simulation results.
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4.1 Simulation Environment

The simulation model of the cellular network area consists of 12 macro cells
that have the same radius of 1km as shown in Fig. 7. In that figure three shad-
owed cells numbered 0, 3, and 4 are the mobility zone which the UE can move
to. We used two mobility patterns in the simulation as shown in Fig. 8. The
border-weighted random waypoint model selects the next waypoint within the
cell border area at a certain high probability. In mobility type 2, the movement
direction in degree is generated by the uniform distribution of 0, 90 and 270
for emulating urban-style mobility while the uniform distribution of the range
[0, 360) in the mobility type 1. At each linear path, The movement speed of
the UE is as follows: 0.3x, 0.5x, x, 0.5x, and 0.3x for the sections of each path,
0-10%, 10-20%, 20-80%, 80-90%, and 90-100% respectively, where x is the UE’s
maximum movement speed.

Fig. 7. Simulation model of the cellular layout

4.2 Performance Simulation Design

In order to execute a performance simulation and obtain performance results,
some extra information is to be added in the functional design such as time
delay or random property. We used SDL timers for all time advances and Tau
performance library for queue manipulations, random number generation, and
writing measurements on file. As already shown in Fig. 5, a performance model
of our system was designed as an inheritance of the mobility design. Top-level
structure of the performance simulation system is shown in Fig. 9.

For modeling signal broadcasting and propagation delays between LTE nodes,
two extra blocks named ‘RadioEnvSimulator’ and ‘NetworkEnvSimulator’ were
added in the performance model. Propagation time is calculated with the
network configuration data and a time advance is realized with a corresponding
SDL timer in those blocks.
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Fig. 8. Mobility pattern for simulation

Fig. 9. Top-level structure of the performance simulation system
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In order to decide the received signal strength (RSS) of a UE dynamically
based on a UE movement scenario, the current location of a UE must be iden-
tified because the RSS is determined by the distance between the UE and the
eNobeB. According to the mobility scenario described in the previous subsec-
tion, the next waypoint of a UE is decided first and thus the location of a UE
after a time interval can be calculated. The time interval for updating the UE’s
location may be changed dynamically according to the UE’s movement speed
in order to avoid unnecessary location updates as in OPNET. However, we had
to use a static time interval because some measurement-related data should be
monitored periodically in order to send additional types of measurement reports
related to handover prediction. Even if we used this static time interval, the
performance simulation time was not so large actually.

Figure 10 shows a part of UE’s physical layer design related to the UE mobility.
There are four consecutive procedures to calculate the received signal strength
based on UE movements: ‘UE mobility’, ‘Cal Distance’, ‘BackgroundNoise’, and
‘Cal EcNo’. The procedure ‘UE Mobility’ decides the current UE location and
the procedure ‘BackgroudNoise’ generates noises for emulating the real network
environment. The received signal strength of a UE from an eNodeB i, Ec/N0(ci),
is calculated as 10 · log1016 − 10 · 2 · log10(di/200) + ni, where di is the distance
between that UE and eNodeB i, and ni is a zero-mean gaussian function for
background and interference noise.

4.3 Simulation Results

In order to examine the performance of handover prediction and decision, two
performance parameters are used: the number of handovers and the rate of ping-
pong handover. We can expect that the more accurate is handover prediction, the
smaller are those parameters. The rate of ping-pong handover is defined as the
number of ping-pong handovers per total number of handovers, and a ping-pong
handover is defined as an unnecessary handover which could be avoided at the
condition of maximum hysteresis threshold and after which the UE’s sojourning
time within a new cell is not long enough as well. We simulated 100-hour UE
movements for each mobility pattern, which took about 10 minutes with Tau
performance simulator with the optimized configuration on an Intel Pentium
IV PC. Optimization of SDL performance models and simulation configurations
will be discussed in the next section.

As for the number of handovers, our technique was about 10% better than
that of the UMTS standard when the hysteresis threshold is small as shown in
Fig. 11. At 5 dB hysteresis threshold, the UMTS standard was slightly better
than our technique as expected. But the UMTS standard with high hysteresis
threshold just delays the handover without handover preparation and may suffer
from errors due to signal degradation. The rate of predicted handover with our
technique, the number of handovers with preparation per total number of han-
dovers, was about 70% for each simulation and the remaining 30% handovers had
to follow the standard due to the sudden and repeated changes of the movement
direction near the cell boundaries.
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Fig. 10. Process type ‘UE PHYProcess’ redefined for UE mobility

The rate of ping-pong handover shows similar results. In Fig. 12, if the sojourn
time condition deciding ping-pong handover was loosened, the rate of ping-pong
handover was also increased as expected. Our technique showed lower rate of
ping-pong handover than that of the UMTS standard for every ping-pong han-
dover condition except the case of 5 dB hysteresis threshold. This result shows
that our technique is also useful to reduce unnecessary and ping-pong handovers
owing to precise handover predictions.
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Fig. 11. The number of handovers

Fig. 12. The rate of ping-pong handover

5 Discussions on Pure SDL Based Performance
Simulation with Tau

In this section, we discuss some SDL design and simulation issues for more
efficient performance evaluation with SDL according to our experience.

5.1 How to Manage Performance Information in an SDL Model

Since functional and performance models intrinsically have distinctive goals, if
we want to use a common base model for both functional and performance
testing of a network protocol, we have to manage that model skillfuly for more
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efficient testing. If we want to perform performance evaluation of a protocol with
its functional model as usual, the performance model should include some extra
performance information. Functional design details which are not related to the
performance, however, may reduce the efficiency of performance simulation.

We tried to handle this problem by specialization of the functional model.
As described in Sect. 4.2, we redefined the SDL design for functional verifica-
tion of the mobility technique to obtain a performance evaluation model. In
the aspect of manageability, this approach can be a good solution. In order to
use two models with higher manageability and reusability, sectioning functional
details properly and hiding the details of each section with a procedure call is
recommended in functional modeling. Otherwise a change of functional design
may require a corresponding change in the performance model. As for the effi-
ciency of the performance model, functional details which are not relevant to the
system performance should be masked in the performance model by redefining
transitions. Sometimes a process or a block may not be necessary for perfor-
mance evaluation but removing a structural element is not allowed in SDL type
inheritance. A possible practical solution is to add extra channels for detouring
those structural elements with additional gate definitions and corresponding sig-
nal matching. Such a manual filtering process may be generalized and automated
by analyzing the control flow of the functional model related to the performance
measures.

5.2 How to Reduce the Performance Simulation Time

Another main issue of pure SDL-based performance simulation is how to reduce
the simulation time. Since we already had a short discussion on the inefficiency of
performance simulation due to unnecessary functional details, we mainly handle
the problems due to SDL simulators which were not designed optimally for
performance simulation in this subsection.

Event-based performance simulation tools such as OPNET usually have sophis-
ticated memory management techniques for efficient handling of the event queues
and performance measurement data. As for the Tau performance simulator, it is
basically identical to the original SDL simulator except that it does not contain
the monitor system in order to increase the simulation speed. For handling simula-
tion information, it only provides some I/O functions for recording measurements
on file. The user should decide how to collect simulation information and perfor-
mance statistics with those functions. Since accessing a file takes a considerable
amount of time, file writing should be designed minimally for reducing the simu-
lation time. Using a so-called RAM disk [16] for such a measurement file is a good
practicalmethod for simulation time reduction.We also need to turnoffprinting on
screen user simulation information for monitoring for the same purpose. Actually
we could increase the execution speed about ten times with those optimizations.

5.3 How to Link to Other Performance Simulation Tools

Even though pure SDL-based performance models are well designed and
SDL performance simulators are well managed, pure SDL-based performance
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simulation of a network protocol may not be a complete substitute for per-
formance simulation with powerful network-specific performance tools such as
OPNET. One of the main reasons is that those tools have huge existing model
libraries for real communication protocols, networks, and related technologies. It
would be very inefficient to design a large number of models additionally in SDL
for performance evaluation of a certain technique. Therefore, it is a very impor-
tant issue how to link SDL models and/or SDL simulators to such a powerful
tool. There have been already several studies such as ns+SDL and they can be
categorized into two classes: tool coupling and model mapping. Since OPNET
is our main network performance tool, here we discuss the way to link our SDL
models and Tau simulator to OPNET.

Actually we have already used an indirect tool coupling with OPNET in
our performance design by allowing OPNET’s measurement data to be used
in an SDL model. That example is shown in Fig. 10. In order to obtain more
realistic signal strength data with actual noises, we made an option to use signal
strength data produced by OPNET (modified UMTS library) with the same
network and mobility configurations as the SDL simulation. There have been
no meaningful differences between the simulation results of the two different
measurement methods. Model mapping of an SDL model to an OPNET model
is an interesting issue because both their designs are based on the same EFSM
model. Actually there was already an initial study about this issue [17]. But
this issue still leaves open because that initial work did not show systematical
mapping details.

6 Concluding Remarks

For estimating the properties of a network protocol, using a common model for
both functional verification and performance evaluation of a network protocol
will reduce a considerable amount of protocol development time and cost. There
have been several researches trying to achieve this goal but they have not been
used widely yet especially in industry due to their incompleteness and/or some
weak points. This paper showed a case study in SDL design and performance
evaluation of a wireless and mobile technology. In order to evaluate our mobility
management technique for 3GPP LTE systems, we designed a simple 3GPP LTE
system and its mobility performance system with pure SDL and Tau performance
library. We described our experience in designing those systems and performance
evaluation with Tau and discussed some SDL design and simulation issues for
more efficient performance evaluation with SDL.

This paper focused on mobility modeling and simulation with time resource
handling in SDL but we also have experience in SDL performance engineering
of other network performance features such as modeling of physical channels
with unreliability and queuing systems with limited buffering and computing
resources. Most of such performance features can be designed in simple SDL
models with some design skills. We are building some SDL model libraries for
easier network performance design in SDL.
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In order to make SDL-based performance simulation used extensively and
considered as an acceptable performance evaluation method in academia and in-
dustry of the networking area, a lot of success stories should happen with various
network technologies. Tool venders’ active support may be required for more effi-
cient performance evaluation with SDL such as extending performance features,
improving performance simulators, and providing predesigned protocol/network
models.

As we discussed before, SDL-based performance simulation of a network pro-
tocol may not be a complete substitute for performance simulation with power-
ful network-specific performance tools. Therefore, there should be also continual
studies on linking SDL models and simulators to those powerful performance
tools such as OPNET or ns-2. We have started to develop a model conversion
system from an SDL model to a corresponding OPNET model using systemat-
ical mapping algorithms. Even if that conversion is not complete, it would be
a valuable help to the users which want to use OPNET for comprehensive per-
formance evaluation of a certain network technology after functional verification
with its SDL model.
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